

ICPC 2024 Asia Regional – Seoul – Nationwide Internet Competition

Problem Set

Please check that you have 11 problems that are spanned across 32 pages in total (including Korean
translation and this cover page).

A. Cleaning Robot (3 pages)

B. Complexity Measure (2 pages)

C. Covers (2 pages)

D. Diagonal Flipping (2 pages)

E. Matrix Game (1+2 pages) Korean translation available

F. Mining Rights (2+2 pages) Korean translation available

G. New Megacity (2 pages)

H. Number Allocation (2+2 pages) Korean translation available

I. Polygon Discovery (3 pages)

J. Two Rings (2 pages)

K. Web Machine (4 pages)

ICPC 2024 Asia Regional – Seoul – Nationwide Internet Competition Problem A: Cleaning Robot

Problem A
 Cleaning Robot

Time Limit: 1 Second

The road network of a city consists of a set of axis-parallel rectangles. Each rectangle road may overlap with
others as shown in the figure below. The city operates an autonomous cleaning robot that is responsible to clean
the entire roads every day. During cleaning, each rectangle is classified into one of three types as follows.

1) Uncleared (UC): A rectangle that the cleaning robot has never visited.
2) Partially cleared (PC): A rectangle that has been cleaned partially.
3) All cleared (AC): A rectangle that has been completely cleaned.

The cleaning robot works according to the following routing algorithm.

Ÿ The robot moves in a clockwise direction while cleaning each rectangle.
Ÿ If the robot encounters a road of a new UC rectangle during the cleaning of a rectangle,

it will turn at the crossing point and move towards the UC rectangle.
Ÿ When a rectangle is completely cleaned as the robot reaches a point (, ) and another

PC rectangle is encountered at (, ), the robot resumes cleaning the PC rectangle at that
same point (, ).

Ÿ If the robot returns to the starting point, it will stay at that point afterwards.
Ÿ It takes the robot one second to move a unit distance along edges, and takes two seconds

in changing direction at a crossing point or corner.

Let us explain the routing algorithm with the following example. The example road network
consists of four rectangles {, , , } where the starting point is s of .

The orange lines in the following figure depict the trajectory of the cleaning robot starting from  of  .

ICPC 2024 Asia Regional – Seoul – Nationwide Internet Competition Problem A: Cleaning Robot

Given information about  rectangles, we want to know the exact locations of the robot for the five query points (1 ≤  ≤ 5) in time. Note that the starting point is designated to the upper left corner of the rectangle .

Input
Your program is to read from standard input. The input starts1 ≤  ≤ 5 with a line containing one integer, 
(1 ≤  ≤ 50), where  is the number of rectangles . The second line gives the five query points (1 ≤  ≤5) in time where 1 ≤  ≤ 100,000. The -th line of following  lines gives four integers  ,  , ,  for  where ( , ) is the lower left corner and (, ) is the upper right corner where 1 ≤  <  ≤1,000, and 1 ≤  <  ≤ 1,000. Note that the intersection points between rectangles are all in the middle of
edges, not at corner points, and there are no edge overlaps among rectangles, so the configurations below are
not given in this problem. Also note that rectangles are not necessarily all connected into one component.

Output
Your program is to write to standard output. Print exactly five lines. The line should contain two integers , 
where (, ) is the location of the cleaning robot at time (1 ≤  ≤ 5).

The following shows sample input and output for three test cases. Note that at time  = 0, the robot is ready to
start at the starting point.

Sample Input 1 Output for the Sample Input 1
4
1234 10000 700 3000 5000
100 500 300 800
100 100 900 400
150 30 190 550
230 350 700 700

900 376
100 800
696 700
190 452
230 476

ICPC 2024 Asia Regional – Seoul – Nationwide Internet Competition Problem A: Cleaning Robot

Sample Input 2 Output for the Sample Input 2
7
9001 8002 7003 6004 5005
200 100 300 800
350 100 500 800
600 100 700 800
100 600 800 700
100 400 800 500
100 200 800 300
900 200 1000 700

263 100
154 600
551 700
500 142
235 400

Sample Input 3 Output for the Sample Input 3
5
1298 5574 3332 1794 7141
400 150 650 700
100 100 750 500
200 400 850 600
500 300 1000 650
150 150 350 350

750 262
500 540
812 600
418 100
400 699

Sample Input 2 Sample Input 3

ICPC 2024 Asia Regional – Seoul – Nationwide Internet Competition Problem B: Complexity Measure

Problem B
 Complexity Measure

Time Limit: 3 Seconds

As the number of International Criminals of Poor Coding (ICPC) has been increasing rapidly, the government
established a specialized prison. Now these ICPCs, the programmers who have written extremely bad codes,
are supposed to be arrested and brutally punished in this place. One of the harsh punishments is drawing
binary search trees. Every morning, the prisoners are given an integer sequence, and they are forced to draw
several binary search trees according to the certain rules.

More precisely, given a sequence  = , , ⋯ ,  of  distinct integers, let () be the binary search tree
constructed by performing the standard way of insertion of each element of  in order; note that it holds for
every 1 ≤  <  ≤  that the node with key  cannot be a descendant of the node with key  . Then the
prisoners must draw  − 1 binary search trees ([1. . ]), ([2. . ]), ⋯ , ([ − 1. . ]) where [. . ] is
the suffix sequence , , ⋯ ,  of . For ease of verification, the prisoners must fill a table representing
the trees. This table has  − 1 rows and  columns and the cell in the -th row and -th column has to be filled
with the key of the parent of the node with key  in the binary search tree ([. . ]).

For example, if  = 2,4,5,3,1, the cell in the second row and the fifth column needs to be filled with 3,
because the parent of the node with key (= 1) in ([2. .5]) has the key 3. The binary search trees and the
entire table for  are as in Fig. 1.

(a) ([1. .5])

(b) ([2. .5])

(c) ([3. .5]) (d) ([4. .5]) (e) Table

One day, the prison administrators noticed that some sequences are too easy to fill the table while others are
not. For example, consider a sequence  = 8,7,1,2,3,6,5,4. When looking at its table, one can notice that
each row is a suffix of the first row (Fig. 2(a)). Such an easy case should not be given to these guilty prisoners.
On the other hand, another sequence  = 6,4,2,7,1,8,3,5 is more complicated in the sense that the table has
many pairs of adjacent nonempty cells in the same column with different values (indicated with red boxes in
Fig. 2(b)). Such pairs are called critical changes. In short,  has no critical changes while ′′ has 9 critical
changes, from which one can say that ′′ is more difficult than ′. The prison administrators want to use the
number of critical changes as a complexity measure of a sequence so that they can control the difficulty of the
tree-drawing task.

Fig. 1 Binary search trees for  = , , , ,  and the table representation.

ICPC 2024 Asia Regional – Seoul – Nationwide Internet Competition Problem B: Complexity Measure

(a) Table for ′ (b) Table for ′′

Given a sequence of  distinct integers, write a program to output the number of critical changes of the
sequence.

Input
Your program is to read from standard input. The input consists of two lines. The first line contains an integer  (2 ≤  ≤ 250,000), where  is the length of the sequence. The following line contains  integers that
comprise the input sequence. The integers are distinct and range from 1 to .

Output
Your program is to write to standard output. Print exactly one integer indicating the number of critical
changes of the sequence.

The following shows sample input and output for three test cases.

Sample Input 1 Output for the Sample Input 1
5
2 4 5 3 1

2

Sample Input 2 Output for the Sample Input 2
8
8 7 1 2 3 6 5 4

0

Sample Input 3 Output for the Sample Input 3
8
6 4 2 7 1 8 3 5

9

Fig. 2 Tables for two sequences  = , , , , , , ,  and  = , , , , , , , .
 The numbers of critical changes for ′ are ′′ are  and , respectively (indicated with red boxes).

ICPC 2024 Asia Regional – Seoul – Nationwide Internet Competition Problem C: Covers

Problem C
 Covers

Time Limit: 1 Second

You are given two strings  and . Your aim is to create  with . You first begin with an empty string. Then
you can do one of three operations shown below.

l Put  at the end of the current string. This operation costs 0.
l Put a character at the end of the current string. This operation costs 1.
l Delete characters at the end of the current string and put . This operation costs the number of

characters you deleted.

For example, assume that  =  and  =  . There are two ways to create  with  as follows,
where  denotes an empty string.

l  →  →  →  →  →  , or
l  →  →  →  →  .

The former costs four as it first puts  (cost 0) and four characters (, , , and , cost 4). The latter costs two
as it first puts  (cost 0), then deletes one character (, cost 1) and puts  (cost 0), and finally puts a character
(, cost 1). We choose the latter and we can see that it has the minimum cost.

Given  and , write a program which computes the minimum cost to create  with .

Input
Your program is to read from standard input. The input starts with a line containing two integers,  and 
(1 ≤  ≤ 100,000 , 1 ≤  ≤ 200,000), where  is the length of  and  is that of  . The second line
contains  and the third line contains . Both  and  are in English lower-case letters.

Output
Your program is to write to standard output. Print exactly one line. The line should contain the minimum cost
to create  with .

The following shows sample input and output for three test cases.

Sample Input 1 Output for the Sample Input 1
4 8
aaba
aabaabaa

2

Sample Input 2 Output for the Sample Input 2
4 8
aaba
ccdccdcc

8

ICPC 2024 Asia Regional – Seoul – Nationwide Internet Competition Problem C: Covers

Sample Input 3 Output for the Sample Input 3
4 8
abab
abababab

0

ICPC 2024 Asia Regional – Seoul – Nationwide Internet Competition Problem D: Diagonal Flipping

 Problem D
 Diagonal Flipping

Time Limit: 1 Second

We are given an  ×  grid that consists of 0s and 1s. We have two types of diagonal operations like the
following two figures. The type  diagonal flipping operation to a grid position (, ) is to flip all the elements
in the positions ( + ,  − ) of the grid for any integer . If we flip the element 0, then it becomes 1. If we
flip the element 1, then it becomes 0. The type  diagonal flipping operation to a grid position (, ) is to flip
all the elements in the positions ( + ,  + ) of the grid for any integer . Note that a grid position (, ) is
valid only when 0 ≤  ≤  − 1, 0 ≤  ≤  − 1.

Fig 1 shows the type  diagonal flipping operation to the grid position (2, 0). Note that the type  diagonal
flipping operations to the grid positions (1, 1) or (0, 2) have the same effect. Fig 2 shows the type  diagonal
flipping operation to the grid position (2, 1). The type  diagonal flipping operations to the grid positions (1, 0)
or (3, 2) have the same effect.

Given an information of an  ×  grid, write a program to output the minimum number of the diagonal
operations to make all the elements in the grid to zeros.

Input
Your program is to read from standard input. The first line of input contains two positive integers (1 ≤  ≤1,000) and (1 ≤  ≤ 1,000) where  and  indicate the number of rows and columns of the grid,
respectively. The rows of the grid are numbered from 0 to  − 1 and the columns are numbered from 0 to  −

Fig 1. Type  diagonal operation to the grid position (, )

Fig 2. Type  diagonal operation to the grid position (, )

ICPC 2024 Asia Regional – Seoul – Nationwide Internet Competition Problem D: Diagonal Flipping

1. In the following  lines, the -th line contains  numbers, separated by spaces, which are zero or one that
correspond to the row  − 1 of the grid.

Output
Your program is to write to standard output. Print exactly one line. The line should contain the minimum number
of the diagonal operations to make all the elements of the grid to zeros. If it is not possible to make all the
elements of the grid zeros, the program should print the number -1.

The following shows sample input and output for four test cases.

Sample Input 1 Output for the Sample Input 1
4 3
1 0 1
0 0 1
1 1 1
0 0 0

4

Sample Input 2 Output for the Sample Input 2
2 2
1 1
1 1

2

Sample Input 3 Output for the Sample Input 3
3 3
1 0 1
0 1 0
1 0 1

3

Sample Input 4 Output for the Sample Input 4
3 3
0 0 1
0 0 1
1 0 1

-1

ICPC 2024 Asia Regional – Seoul – Nationwide Internet Competition Problem E: Matrix Game

Problem E
 Matrix Game

Time Limit: 1 Second

Hoon and Chan are playing a matrix game. Each of both has  ×  matrices  = () and  = (),
respectively. The game is composed of  rounds and in each round, Hoon and Chan simultaneously call the
numbers  and , respectively, which are integers between 1 and . Then Hoon and Chan obtain the points of  and , respectively.

In the last night’s dream, Hoon looked at  numbers , , …,  which Chan will call in the rounds of
game. Thus Hoon may select  numbers , , …,  to maximize the term Diff, where Diff is defined as ∑  −  , that is, the total sum of absolute differences of their points.

Given  numbers which Chan calls in the rounds, write a program to output the maximum value of Diff when
Hoon chooses  numbers to maximize it.

Input
Your program is to read from standard input. The input starts with a line containing two integers,  and 
(1 ≤  ≤ 1,000, 1 ≤  ≤ 1,000,000), where  is the size of both matrices which Hoon and Chan have in
the game and  is the number of rounds of the game. In the following  lines, the -th line contains 
integers to represent the values on the -th row of Hoon’s matrix. In the following  lines, the -th line
contains  integers to represent the values on the -th row of Chan’s matrix. The values of both matrices are
between 0 and 1,000. The next line contains  integers between 1 and  that Chan calls in the rounds of the
game.

Output
Your program is to write to standard output. Print exactly one line. The line should contain the maximum
value when Hoon selects  numbers such that Diff is maximized.

The following shows sample input and output for two test cases.

Sample Input 1 Output for the Sample Input 1
2 2
1 2
0 1
3 1
2 1
2 1

3

Sample Input 2 Output for the Sample Input 2
2 3
5 0
2 6
3 3
3 2
1 1 2

8

ICPC 2024 Asia Regional – Seoul - Nationwide Internet Competition Problem E: Matrix Game

Problem E
행렬 게임
제한 시간: 1 초

훈과 찬은 행렬 게임을 하고 있다. 두 사람은 각각  × 행렬  = ()와  = ()를 가지고 있다.

게임은 개 라운드로 구성되고, 각 라운드에서 훈과 찬은 동시에 각각 숫자 와 를 부른다.

여기서, 와 는 1과 사이의 정수이다. 그러면 훈과 찬은 각각 와 의 점수를 얻는다.

전날 밤 꿈에서, 훈은 찬이 게임의 각 라운드에서 부를 개 숫자 , , …, 를 보았다. 따라서

훈은 Diff 가 최대가 되는 개 숫자 , , …, 을 선택할 수 있다. 여기서, Diff 는 ∑  −로 정의하고, 이것은 둘의 각 라운드 점수의 절대값 차이의 총 합이다.

각 라운드에서 찬이 부르는 개 숫자가 주어지면, 훈이 Diff 를 최대화하는 개 숫자들을 선택할

때, Diff 의 최대값을 출력하는 프로그램을 작성하시오.

Input
입력은 표준 입력을 사용한다. 첫 번째 줄에 두 정수 과  (1 ≤  ≤ 1,000, 1 ≤  ≤ 1,000,000)이

주어진다. 여기서, 은 훈과 찬이 게임에서 가지고 있는 행렬의 크기이고 은 게임의 라운드

개수이다. 다음 이어지는 개 줄의 번째 줄에는 훈의 행렬의 번째 행의 값들을 나타내는 개

정수가 주어진다. 다음 이어지는 개 줄의 번째 줄에는 찬의 행렬의 번째 행의 값들을 나타내는 개 정수가 주어진다. 이 행렬들의 값은 0과 1,000 사이의 정수이다. 다음 줄에는 찬이 각

라운드에서 부르는 1 과  사이의 개 정수가 주어진다.

Output
출력은 표준 출력을 사용한다. 훈이 Diff 를 최대화하는 개 숫자를 선택할 때, Diff 의 최대값을

출력한다.

ICPC 2024 Asia Regional – Seoul - Nationwide Internet Competition Problem E: Matrix Game

다음은 두 테스트 경우에 대한 입출력 예이다.

Sample Input 1

Output for the Sample Input 1

2 2
1 2
0 1
3 1
2 1
2 1

3

Sample Input 2 Output for the Sample Input 2
2 3
5 0
2 6
3 3
3 2
1 1 2

8

ICPC 2024 Asia Regional – Seoul - Nationwide Internet Competition Problem F: Mining Rights

Problem F
Mining Rights
Time Limit: 1 Second

There is a circular piece of land where very valuable resources are buried at two distinct locations. Due to the
immense value of these resources, many companies competed to obtain the mining rights, and two companies
were selected through a rigorous review process. Your company has been chosen as one of the final two
companies granted the mining rights. To avoid favoritism, the government devised a fair method for allocating
the subareas of the land to the companies.

The method for dividing the land is as follows:

Ÿ Rule 1 (Division by Company A): Company A is allowed to
divide the circular land into smaller areas using one or more
line segments. (The number of line segments is less than 10,000). Each line segment starts from one point on the
circumference and ends at another point on the circumference.

Ÿ Rule 2 (No Cross-Border Right): Adjacent areas sharing a
straight boundary must be developed by different companies.

Ÿ Rule 3 (Acceptance and Selection by Company B): The other company, Company B, has the
right to either accept or reject the division proposed by Company A. If Company B accepts, it also
has the right to choose one of the areas. All the remaining areas will be automatically assigned to
the two companies based on Rule 2.

You are already aware of two locations,  and , where valuable resources are buried. Your goal is to ensure
that both locations are included within your granted areas. To achieve this, as Company B, you will decide
whether to accept or reject the division proposed by Company A.

Given a division proposed by Company A that is a set of line segments and the locations of the buried resources,
write a program to decide whether you, company B, accepts the division or not.

Input
Your program is to read from standard input. The input starts with a line containing an integer number ,
representing the number of line segments that divide the circle. The integer  is less than 10,000. In the
following  lines, each line describes one line segment. Each line contains two integers representing the indices
of two points on the circumference of the circle, which is divided into 3,600 equidistant units. The point directly
east of the center of the circle is indexed as 0, and the indices increase counterclockwise, ranging from 0 to 3,599. No identical line segments are given in the input.

ICPC 2024 Asia Regional – Seoul - Nationwide Internet Competition Problem F: Mining Rights

After the  lines representing the dividing line
segments, two additional lines provide information
about two distinct locations  and  where the
resources are buried. Each location is represented by
two integers. The first integer indicates the direction,
represented by the index of the point where a ray from
the center, passing through the buried location, meets
the circumference. The second integer represents the
distance from the center to the buried resource. The
distance is measured by dividing the radius of the
circle into 1,000 equidistant units, so the center has a
distance of 0 , and a point on the circumference has a
distance of 1,000. It is guaranteed that the locations
are within the circle and no locations lie on any of the
line segments.

Output
Your program is to write to standard output. Print exactly one line. The line should be “YES” if company B can
obtain both resource locations  and . If not, the line should be “NO”.

The following shows input and output for two test cases.

Sample Input 1 Output for the Sample Input 1
3
450 1800
900 0
450 2700
900 850
450 500

NO

Sample Input 2 Output for the Sample Input 2
4
450 1800
0 1350
1350 2700
2700 0
450 500
3150 950

YES

ICPC 2024 Asia Regional – Seoul - Nationwide Internet Competition Problem F: Mining Rights

Problem F
채굴권 분할
제한 시간: 1 초

어느 원형의 땅 안에는 서로 다른 두 위치에 매우 귀중한 자원이 매장되어 있다. 이 자원들의 엄청난

가치 때문에 많은 회사가 채굴권을 얻기 위해 경쟁했지만, 엄격한 심사 과정을 통해 두 개의 기업만

선정되었다. 여러분의 회사는 최종적으로 채굴권을 얻은 두 회사에 포함되었다. 특혜 시비를 피하기

위해 정부는 두 회사에게 이 땅을 배분하는 공정한 방법을 고안했는데, 그 방법은 다음과 같다:

l 규칙 1 (A 사의 분할): 한 회사 A 는 10,000 개보다 적은 수의

선분을 사용하여 원형의 토지를 더 작은 영역으로 나눌 수

있다. 각 선분은 원의 둘레 위에 있는 한 점에서 시작하여 원의

둘레 위에 있는 다른 한 점에서 끝난다.

l 규칙 2 (경계 침범 금지): 직선 경계를 공유하며 맞닿아 있는

영역은 서로 다른 회사가 개발해야 한다.

l 규칙 3 (B 사의 수락과 선택권): B 회사는 A 회사가 제안한 분할을 수락하거나 거부할 권리가

있다. B 회사가 수락할 경우, B 회사는 분할된 영역 중 하나를 선택할 권리가 있다. 그 외의

나머지 영역들은 규칙 2 에 따라 두 회사에 자동으로 할당된다.

당신은 자원이 매장된 두 위치 과 를 이미 알고 있다. 당신은 B 회사를 대표해 위치 모두가 B

회사에 할당된 영역 안에 놓일 수 있도록 A 회사의 분할을 수락할지 거부할지를 결정해야 한다.

선분의 집합으로 표현되는 회사 A 의 분할 제안과 자원이 묻혀 있는 두 위치가 주어질 때, 회사 B 가

이를 수락해야 하는지 그렇지 않은지를 결정하는 프로그램을 작성하라.

Input
입력은 표준 입력을 사용한다. 첫 번째 줄에 원을 분할하는 선분의 개수를 나타내는 10,000보다 작은

정수 이 주어진다. 그 다음 개 줄에 개 선분에 대한 정보가 주어진다. 각 줄은 하나의 선분이 갖는

ICPC 2024 Asia Regional – Seoul - Nationwide Internet Competition Problem F: Mining Rights

두 끝점을 나타내는 두 개의 정수 인덱스로

이루어진다. 원의 둘레는 3,600 개의 단위로

나누어지며, 원의 중심에서 정확히 동쪽에 있는

원 둘레 위의 점이 인덱스 0 을 갖고, 이

인덱스는 반시계 방향으로 증가하여 3,599 까지의 값을 가질 수 있다. 여기서

중복되는 선분은 존재하지 않는다. 선분들을

표현하는  개의 줄이 끝나면, 자원이 매장된

서로 다른 두 위치 과 의 정보를 담은 두

줄이 추가로 주어진다. 각 위치는 두 정수로 표시된다. 첫 번째 정수는 방향을 나타내며, 중심에서

출발하여 매장된 위치를 통과하는 반직선이 원의 둘레와 만나는 지점의 인덱스로 표현된다. 두 번째

정수는 중심에서 매장된 자원까지의 거리를 나타낸다. 거리는 원의 반지름을 1,000 개의 단위로

나누어 측정되며, 중심의 거리는 0이고 원의 둘레에 있는 점들의 거리는 1,000이다. 매장된 자원은

원 안에 있으며, 선분 위에 놓이는 일도 없다는 것이 보장된다.

Output
출력은 표준 출력을 사용한다. 출력은 정확히 한 줄로 이루어진다. B 회사가 두 자원의 위치 과  모두를 획득할 수 있다면 “YES”, 그렇지 않으면 “NO”를 출력한다.

다음은 두 가지 테스트 케이스에 대한 입력과 출력을 보여준다.

Sample Input 1 Output for the Sample Input 1
3
450 1800
900 0
450 2700
900 850
450 500

NO

Sample Input 2 Output for the Sample Input 2
4
450 1800
0 1350
1350 2700
2700 0
450 500
3150 950

YES

ICPC 2024 Asia Regional – Seoul – Nationwide Internet Competition Problem G: New Megacity

Problem G
 New Megacity

Time Limit: 2.5 Seconds

You are involved in a huge project to design a new megacity connecting  cities using a given set of  potential
roads, each with an associated cost. All cities should be connected with the minimum total cost, that is, they
form a Minimum Spanning Tree (MST). However, not all roads are equally important. Your job is to determine
the importance of each road on the following categories:

• Type 1: The road is included in every possible MST that connects all cities. This means that this
road is essential for the optimal solution.

• Type 2: The road appears in at least one MST but does not in all.
• Type 3: The road is never used in any MST; it does not contribute to the least costly connection of

all cities.

Given a road network of  cities with  roads with associated costs, write a program to output the type of each
road.

Input
Your program is to read from standard input. The input starts with a line containing two integers  and , where  is the number of cities (2 ≤  ≤ 100,000) and  is the number of potential roads ( − 1 ≤  ≤min(100,000, ( − 1)/2)).
In the following  lines, the -th road is given by three integers , ,  where  and  are the cities connected
by the road (1 ≤ ,  ≤ ,  ≠ ), and  is the cost of building that road (1 ≤  ≤ 100,000). Each pair of cities
is connected by at most one road, that is, there are no multiple edges between the same pair of cities.

It is guaranteed that at least one MST always exists for the given input.

Output
Your program is to write to standard output. Print  lines. The  -th line should contain a single integer
representing the type of the -th road (1, 2, or 3), in the same order as the input.

The following shows sample input and output for two test cases.

Sample Input 1 Output for the Sample Input 1

4 6
1 2 3
1 4 4
2 4 6
2 3 2
4 3 5
3 1 3

2
1
3
1
3
2

ICPC 2024 Asia Regional – Seoul – Nationwide Internet Competition Problem G: New Megacity

Sample Input 2 Output for the Sample Input 2

4 5
1 2 1
1 3 1
2 3 1
2 4 1
3 4 1

2
2
2
2
2

ICPC 2024 Asia Regional – Seoul – Nationwide Internet Competition Problem H: Number Allocation

Problem H
 Number Allocation

Time Limit: 0.1 Seconds

A grid consisting of 25 squares in a 5 × 5 size is given, as shown in the figure above. For convenience, let's
assign the coordinates (1,1) to the top-left square and (5,5) to the bottom-right square. Initially, the squares at (1,1), (4,5), (5,4), and (5,5) are filled with 0, and certain numbers are pre-filled in all squares of the first row
and the first column. That is,  to  are the pre-filled numbers. Now, the remaining empty squares must be
filled with different numbers from 1 to 13. In other words,  to  are different numbers from 1 to 13. At this
point, the following rules must be observed between the numbers.

Ÿ  =  +  +  + 
Ÿ  =  +  +  + 
Ÿ  =  +  + 
Ÿ  =  + ℎ
Ÿ  =  +  +  + 
Ÿ  =  +  +  + ℎ
Ÿ  =  +  + 
Ÿ  =  + 

That is, except for (1,1), the value of each square in the first row is the sum of the values in the same column,
and the value of each square in the first column is the sum of the values in the same row.

For example, consider the values  to  as shown in the right figure. If we assign
the numbers 1, 2, 9, 4, 13, 10, 6, 5, 8, 7, 12, 11, and 3 to variables  to  in that
order, the rules mentioned above will be satisfied. However, consider the case
where the values of  to  are 3, 22, 27, 9, 16, 34, 27, and 14 in that order. In this
scenario, there is no way to assign numbers that satisfy the rules mentioned above.

Given eight numbers of  to , write a program to output the number of possible
ways to assign different numbers from 1 to 13 to  through  in such a way that
the above rules are satisfied.

Input
Your program is to read from standard input. The values of integers , , , , , , , and  are given in order
on a single line. Each integer is between 3 and 46 inclusive.

0              ℎ     0    0 0

0 33 22 27 9 16 1 2 9 4 34 13 10 6 5 27 8 7 12 0 14 11 3 0 0

ICPC 2024 Asia Regional – Seoul – Nationwide Internet Competition Problem H: Number Allocation

Output
Your program is to write to standard output. Print exactly one line. The line should contain the total number of
all possible ways to assign 13 different integers from 1 to 13 to  through .

The following shows sample input and output for two test cases.

Sample Input 1 Output for the Sample Input 1
33 22 27 9 16 34 27 14 126

Sample Input 2 Output for the Sample Input 2
3 22 27 9 16 34 27 14 0

ICPC 2024 Asia Regional – Seoul – Nationwide Internet Competition Problem H: Number Allocation

Problem H
숫자 할당

제한 시간: 0.1 초

위 그림과 같이 5 × 5 크기의 총 25칸으로 이루어진 격자판이 주어져 있다. 편의상 맨 왼쪽 위 칸의

좌표를 (1,1)이라 하고 맨 오른쪽 아래 칸의 좌표를 (5,5)라 하자. 초기에 (1,1), (4,5), (5,4), (5,5)에는 0 이 채워져 있고, 1행의 모든 칸과 1열의 모든 칸은 미리 어떤 숫자(정수)들이 채워져 있다. 즉, ~는 미리 채워진 숫자들이다. 이제 나머지 빈 칸들에 1부터 13까지의 서로 다른 수들을 채워야

한다. 즉, ~은 1부터 13까지의 서로 다른 숫자이다. 이때, 각 숫자들 사이에는 다음과 같은 규칙이

성립해야 한다.

Ÿ  =  +  +  + 
Ÿ  =  +  +  + 
Ÿ  =  +  + 
Ÿ  =  + ℎ
Ÿ  =  +  +  + 
Ÿ  =  +  +  + ℎ
Ÿ  =  +  + 
Ÿ  =  + 

즉, (1,1)을 제외하고, 첫 번째 행의 각 칸에 있는 수들은 같은 열에 있는 수들의 합이며, 첫 번째 열의

각 칸에 있는 수들은 같은 행에 있는 수들의 합이다.

예를 들어, 부터 까지의 숫자가 오른쪽 그림과 같이 주어졌다고 하자.

만약 부터 까지의 숫자를 그림과 같이 할당하면 위의 규칙이 만족된다.

하지만 만약 부터 까지의 숫자가 3, 22, 27, 9, 16, 34, 27, 14로 주어졌다면

위의 규칙을 만족하도록 ~에 할당할 수 있는 방법이 없다.

0              ℎ     0    0 0

0 33 22 27 9 16 1 2 9 4 34 13 10 6 5 27 8 7 12 0 14 11 3 0 0

ICPC 2024 Asia Regional – Seoul – Nationwide Internet Competition Problem H: Number Allocation

부터 까지 8개의 숫자가 주어졌을 때, 위의 규칙이 만족되도록 1부터 13까지의 서로 다른 숫자를 ~에 할당하는 모든 경우의 수를 출력하는 프로그램을 작성하시오.

Input
입력은 표준입력을 사용한다. 정수 , , , , , , , 의 값이 한 줄에 차례로 주어진다. 각 정수는 3

이상 46이하이다.

Output
출력은 표준출력을 사용한다. 1부터 13까지의 서로 다른 13개의 정수를 ~에 할당할 수 있는 모든

경우의 수를 한 줄에 출력한다.

다음은 두 테스트 케이스에 대한 입출력 예이다.

Sample Input 1 Output for the Sample Input 1
33 22 27 9 16 34 27 14 126

Sample Input 2 Output for the Sample Input 2
3 22 27 9 16 34 27 14 0

ICPC 2024 Asia Regional – Seoul – Nationwide Internet Competition Problem I: Polygon Discovery

Problem I
 Polygon Discovery

Time Limit: 4 Seconds

You are a member of the research team CPCI (Convex Polygon Computational Investigation), tasked with
uncovering the properties of an unknown simple polygon  located on a two-dimensional coordinate plane. The
exact coordinates of the polygon  are unknown, but you can use a special equipment that allows you to query
the number of intersections between a given query line and .

The polygon  is known to be a convex polygon, meaning every line segment between two points inside
the polygon is fully contained within its interior. Additionally,  is non-degenerate, ensuring that its area is
strictly greater than zero. The polygon also contains the origin (0, 0) strictly within its interior. All vertices of  have integer coordinates, with each coordinate lying within the range [−1,024, 1,023] inclusive.

Write a program to compute the area of the polygon  by invoking a series of queries.

Query
You can query with any straight line  on the coordinate plane by selecting two distinct integer points (, )
and (, ) on the line . For each query, you will receive the number of intersection points between the line 
and the boundary of the polygon .

You are allowed to request at most 4,096 queries. Using the intersection counts from these queries, you
need to determine the exact area of the polygon .

Interaction
This is an interactive problem. Your submitted program will interact with an interactor inside the grading
server, which reads input from and writes output to your program.

The interaction proceeds in rounds. In each round, your program must first write a line containing one of
two types of requests as follows:

1. A query: “?    ”
l This query request starts with a character ‘?’, followed by four integers , , , and .
l This asks for the number of intersection points between the straight line passing through the two

distinct points (, ) and (, ) and the polygon .
l The values , , , and  must be integers in the range [−10, 10] inclusive.

2. A final output: “!  ”
l This output request starts with a character ‘!’, followed by a real number  .
l This signals that your program has determined the area of the polygon .

After the request is asked, an input line is followed, containing the response of the interactor to your request,

and the response is available on standard input. If your request is a query, the response will be an integer
representing the number of intersection points. If there are infinitely many intersection points, the response will
be “infinity”. If your request is a final output, the response will be “correct” if  is within an absolute
error of 10 of the actual area. Otherwise, the response will be “wrong”.

ICPC 2024 Asia Regional – Seoul – Nationwide Internet Competition Problem I: Polygon Discovery

If your program violates the interaction protocol (e.g., issues a malformed request or makes more than 4,096 queries), the interactor will immediately terminate the interaction. Also, your program must request
exactly one final output, and this must be the last request. After making the output request, your program must
terminate gracefully. Do not forget to flush the output after each request.

The polygon  is fixed throughout the interaction; the interactor is not adaptive.

The time and memory used by the interactor is also included in the calculation of your program’s execution

time and memory usage. You can assume that the maximum time used by the interactor is 1 second and the
maximum amount of memory is 4 MiB.

Read
(Interactor’s Response)

Sample Interaction 1 Write
(Your Request)

 ? 0 0 1 1

2

 ? -3 -1 0 2

0

 ? 0 -4 4 0

1

 ? 4 3 7 5

infinity

 ! 5.5

correct

In this example, the coordinates of the polygon  were (1, 1), (−2, −1), and (2, −2).

To flush, you need to do the following right after writing a request and a line break:
l fflush(stdout) in C;
l std::cout << std::flush in C++;
l System.out.flush() in Java;
l sys.stdout.flush() in Python.

A testing tool is provided to help you develop your solution, so it is not mandatory to use it. If you

want to use it, you can download the attachment testing_tool.py from the DOMjudge Problemset page.
You can run python3 testing_tool.py -f input.in ./sol to see how your program interacts
for a specific polygon . This testing tool can be used regardless of the language of your program as follows:
the same explanation is also found in the comments of testing_tool.py.

Usage: python3 testing_tool.py -f inputfile <program>

Use the -f parameter to specify the input file, e.g. input.in.

Format of the input file: The first line contains an integer  (≥ 3) that is the number of vertices of the polygon . Each of the next  lines contains two integers  and  that are - and -coordinates of the -th vertex of ,
respectively. The coordinates of the vertices of  must be given in counterclockwise order.

Example: A triangle ( = 3) with vertices (1, 1), (−2, −1), (2, −2) given in counterclockwise order.
3
1 1
-2 -1
2 -2

ICPC 2024 Asia Regional – Seoul – Nationwide Internet Competition Problem I: Polygon Discovery

 If you have a C++ solution stored in a file called "sol.cpp", you must first compile using "g++ sol.cpp
-o sol" and then invoke the testing tool with:

 python3 testing_tool.py -f input.in ./sol

If you have a Python solution that you would run using "pypy3 solution.py", you could invoke the
testing tool with:

 python3 testing_tool.py -f input.in pypy3 solution.py

If you have a Java solution that you would run using "java MyClass", you could invoke the testing tool
with:

 python3 testing_tool.py -f input.in java MyClass

The tool is provided as-is, and you should feel free to make whatever alterations or augmentations you like to
it. Note that it is not guaranteed that a program that passes the testing tool will be accepted.

ICPC 2024 Asia Regional – Seoul – Nationwide Internet Competition Problem J: Two Rings

Problem J
 Two Rings

Time Limit: 2 Seconds

As a planar shape, a ring can be described as the area between two concentric circles. This concept can of course
be generalized to any possible shapes. For example, one might define rectangular rings to be the area between
two rectangles. A precise definition of rectangular rings is as follows: Here, any rectangles we discuss is
assumed to be axis-aligned, so the four sides of a rectangle are horizontal or vertical, and are distinguished as
the left, right, top, and bottom sides. Any vertical or horizontal segment is also considered a rectangle with
empty interior. A rectangular ring is the closed area between two rectangles  and ′, including the boundary,
such that the following conditions are satisfied:

1. ′ is contained in , including the boundary of .
2. The following four values are equal: the distance between the top side of  and the top side of ′, the

distance between the left side of  and the left side of ′, the distance between the bottom side of 
and the bottom side of ′, and the distance between the right side of  and the right side of ′.

The distance described in the second condition is called the width of the rectangular ring defined by two

rectangles  and ′. The figure below illustrates three rectangular rings of width  defined by two rectangles  and ′. Note that the first and third ones show two extreme and degenerate cases:  =  (thus,  = 0 and
the rectangular ring is the boundary of  = ) and  is a line segment (thus,  is the rectangular ring).

Given a finite set  of points in the plane, write a program that finds two non-penetrating rectangular rings  and  such that  ⊂  ∪  and the larger of their widths is minimized. Two rectangular rings are called
non-penetrating if one’s boundary neither intersects the other’s interior nor crosses the other’s boundary. Note
that two non-penetrating rectangular rings still may touch in their boundaries in such a way that every point in
the intersection between their boundaries lies in the intersection between two parallel sides of their defining
rectangles or a corner.

The above figure shows (a) an example set  of 22 points and (b) an optimal pair of two non-penetrating
rectangular rings containing  that minimizes the larger value of their widths.

ICPC 2024 Asia Regional – Seoul – Nationwide Internet Competition Problem J: Two Rings

Input
Your program is to read from standard input. The input starts with a line containing an integer,  (1 ≤  ≤300,000), where  is the number of input points in . In each of the following  lines, there are two integers
between −10 and 10, separated by a space, that describe the coordinates of a point in . You may assume
that no two input points are identical.

Output
Your program is to write to standard output. Print exactly one line. The line should contain an integer that
describes the minimum possible value for the larger width of two non-penetrating rectangular rings that include
all points of .

The following shows sample input and output for two test cases.

Sample Input 1 Output for the Sample Input 1
13
0 1
1 2
0 5
4 6
5 0
6 2
8 3
11 1
12 -1
13 2
12 4
10 3
3 4

1

Sample Input 2 Output for the Sample Input 2
13
0 1
1 2
0 5
4 6
5 0
6 2
8 3
11 -2
12 -4
13 -1
12 1
10 0
3 4

2

ICPC 2024 Asia Regional – Seoul – Nationwide Internet Competition Problem K: WEB Machine

Problem K
 WEB Machine

Time Limit: 1 Second

Tim has a machine for sorting balls, namely WEB machine. The WEB machine has a
wheel with  slots. Each slot may have a white ball (W), a blue ball (B), or it can be
empty (E). Over a certain slot, the machine has a head to identify the status of the
slot. The head can determine the color of the ball in the slot. It can also pick the ball
in the slot or drop the ball into the slot. The head, however, can hold at most one ball
at a time. The WEB machine can rotate the wheel of slots clockwise or
counterclockwise. Fig. 1 shows an example of WEB machine.

The WEB machine operates according to the control instructions, namely WEB
instructions, and one can write a program as a sequence of the WEB instructions.
The set of WEB instructions and their meaning is defined as follows:

Ÿ Pick: picks up and holds the ball in the current slot under the head,
Ÿ Drop: drops the ball of the head to the current slot,
Ÿ Left: rotates the wheel clockwise by a slot,
Ÿ Right: rotates the wheel counterclockwise by a slot,
Ÿ LeftStar : rotates the wheel clockwise while condition  holds and returns the number of slots

rotated,
Ÿ RightStar : rotates the wheel counterclockwise while condition  holds and returns the number

of slots rotated,
Ÿ Jump : jumps to the next th instruction (If  is 2, the next instruction is skipped and the next of

the next instruction is executed),
Ÿ Jump  if : jumps to the next th instruction if condition  holds and do nothing otherwise,
Ÿ  = : evaluates the expression  and stores it to variable , and
Ÿ Stop: stops the machine.

Executing Pick or Drop, the machine does nothing for improper conditions: the
slot is empty while executing Pick or the slot is not empty while executing Drop.
The variable  should be a capital letter other than W, E, and B. The condition  in
LeftStar , RightStar , or Jump  if  is either one of W, E, B, and 
(a variable) or one of the negated forms (!W, !E, !B, and !). The condition W
implies that the ball in the current slot under the head is white, B does it is blue, and
E does the slot is empty. The condition  holds if  is nonzero ( ≠ 0). The negated
condition holds if the unattributed condition does not hold, say !E is true when E
does not hold. For instance, when executing RightStar !E, the head searches for
an empty slot by rotating the wheel counterclockwise. As a result, there will be an
empty slot under the head if the machine has at least one empty slot. The instruction
incurs an infinite loop if the machine has no empty slot.

The number  in unconditional jump (Jump ) and conditional jump (Jump  if )
can be a negative integer. For instance, Jump -1 branches to the previous
instruction. Beware that you should not execute Jump 0 which incurs an infinite loop.

Fig 1. An example of a
WEB machine

Fig 2. After RightStar
B is executed

ICPC 2024 Asia Regional – Seoul – Nationwide Internet Competition Problem K: WEB Machine

The assignment instruction  =  evaluates the integral expression  and stores the value in variable . The
expression’s value is in the range between −200 and +200 inclusive (|| ≤ 200). The expression can use
any variable that has been defined before. For example, K = K + 1 will increase the variable K by one if K
is defined before; it is an error, otherwise. The expression can be a star instruction, either LeftStar or
RightStar; the assignment will store the number of slots rotated in the target variable. For example,
executing the following assignment:

X = RightStar B

on the machine of the state in Fig. 1 will make the state in Fig. 2, and the value of variable X will be two.

As another example, the following code will restore the state in Fig. 1 from the state in Fig. 2:

 LeftStar !W
 Right
 Pick
 Drop
 Stop

where the third and fourth instructions are listed to demonstrate the relationship between them; Pick and
Drop are the inverse operations of one another.

Note that the expression cannot be nested, i.e. it can include at most one binary arithmetic operator (either + or
-) or the star instruction. From the arithmetic operators, only the addition (+) and subtraction (-) operators are
allowed; the multiplication, division, and modulus operators are invalid in the WEB expressions. The
assignment and arithmetic operators should be separated from their operands by space. A space should not
follow the sign symbol for an integer literal, say “-12” is valid but “- 12” is not.

Tim wants to sort the balls in the WEB machine using a WEB program, a sequence of WEB instructions
ending with Stop. Initially, the balls are mixed in any order though they are grouped in the wheel. Tim wants
the balls to be sorted into a group of white balls and blue ones separated by a group of empty slots reading
clockwise starting from the head. Though the groups of balls are separated by a group of empty slots
clockwise, they are not separated counterclockwise since they are in the wheel of the machine. Let’s help Tim
by writing a sequence of WEB instructions to make the balls in the wheel sorted in W, E, and B order reading
clockwise starting from the head.

The WEB program consists of several lines, each of which contains a single WEB instruction. Therefore, the
above WEB programs are valid, but the following one is invalid, i.e. a syntax error:

 RightStar E X
 = 10 + 2

since the assignment is spanned over two lines; the first instruction has an extra variable at the end and the
second instruction is missing the target variable of the assignment.

Make a WEB program to sort the balls as Tim wanted and submit the WEB program. Your WEB program
should convert the initial configuration of a WEB machine into the final one with the balls sorted by color and
must end with Stop. The initial configuration is given as input and the final one is given as output. In the
initial configuration, assume that the wheel of the WEB machine has at least two empty slots. Initially, all
empty slots are grouped in a sequence over the slots. Assume also that the machine has at least one white
ball and one blue ball. In the final configuration, the white and blue balls should be separated by a sequence of
empty slots with the head located over the leftmost white ball assuming the clockwise reading of the slots.

ICPC 2024 Asia Regional – Seoul – Nationwide Internet Competition Problem K: WEB Machine

Initial configuration of the WEB machine
The initial configuration of the WEB machine is given from standard input. The first line of input contains a
positive integer  (5 ≤  ≤ 100), the number of slots of the machine. The second line contains a sequence of  characters indicating the initial state of the wheel. The character in the second line is one of W, B, and E
indicating a white ball, a blue ball, and an empty slot, respectively. The characters are given in clockwise and
separated by space. The first character indicates the slot under the head of the machine. The character E’s are
given consecutively in groups.

Final configuration of the WEB machine
The final configuration of the machine is given from standard output. Your WEB program is to sort the balls
in the initial WEB machine resulting in the final configuration. The final configuration is a sequence of 
characters indicating the final state of the wheel. The balls should be sorted in the order with the white ball(s),
the empty slots, and the blue ball(s) clockwise starting from the head.

The following shows sample initial and final configurations of the WEB machine for three test cases.

Sample Initial Configuration 1 Final Configuration for the Sample Initial

Configuration 1
5
B W B E E

W E E B B

Sample Initial Configuration 2 Final Configuration for the Sample Initial

Configuration 2
7
W B W E E E W

W W W E E E B

Sample Initial Configuration 3 Final Configuration for the Sample Initial

Configuration 3
8
W E E W B W B B

W W W E E B B B

Submit
You have to submit a WEB program, say sort.web, to operate on the WEB machine of a given initial
configuration. The WEB program should convert the initial configuration to the final configuration as Tim
wanted. You should select WEB as the submission language in the DOMjudge auto-judge system; otherwise,
the system can reject your program with no penalty.

Simulator
For testing purposes, you are provided with a WEB machine simulator, which can read the WEB program file
and the initial configuration of the WEB machine. The simulator is just for your convenience, so it is not
mandatory to use it. If you want to use it, you can download the attachment wm.py from DOMjudge
Problemset page. It can detect some kinds of errors, either syntax or run-time errors; it shows the final
configuration resulting from the execution of the WEB program given an initial configuration; it counts the
number of steps required to execute the WEB program — see the function  described later. The final
configuration is shown in the standard output and the errors are shown in the standard error: the syntax error is
reported as Compile Error and the run-time error is reported as Runtime Error. The number of steps
is also shown in the standard error. Though the simulator is useful for testing WEB programs, it may not
provide complete information for evaluating your code. You just use it as a reference for testing a WEB
program. Note that passing the simulator does not guarantee that the WEB program will be accepted by the
auto-judge system.

ICPC 2024 Asia Regional – Seoul – Nationwide Internet Competition Problem K: WEB Machine

The simulator assumes the WEB program file as the first argument in the command line and the initial
configuration is read from the standard input. For example, the following command will execute the WEB
program file named sort.web for the first sample input using the simulator wm.py:

> python wm.py sort.web
8
B B E E E W B W

where the first character in the first line (>) denotes the prompt. The simulator is executable on a Python
interpreter of version greater than or equal to 3.9. You may test the following code for sort.web to get the
configuration in Fig. 2:

X = RightStar B
Stop

The simulator will force to terminate the execution of the WEB program within a certain number of steps. The
number of steps of instructions is calculated by the function , which is defined as follows:

Ÿ (Pick) = 1,
Ÿ (Drop) = 1,
Ÿ (Left) = 1,
Ÿ (Right) = 1,
Ÿ (LeftStar ) =  where  is the number of slots rotated clockwise,
Ÿ (RightStar ) =  where  is the number of slots rotated counterclockwise,
Ÿ (Jump 0) = ∞,
Ÿ (Jump ) = 1 for nonzero ,
Ÿ (Jump 0 if ) = ∞ if  is true and 1 otherwise,
Ÿ (Jump  if ) = 1 for nonzero ,
Ÿ ( =  + ) = 1,
Ÿ ( =  − ) = 1,
Ÿ ( = ) = 1 + () where σ() = () if  is a star instruction  and () = 0 otherwise, and
Ÿ (Stop) = 1.

Note that the number of steps of the star instructions (LeftStar and RightStar) can vary depending on
the condition. Also, note that the number of steps of the jump instructions for 0, say Jump 0 or Jump 0 if 
for any valid condition , is infinite. A copying assignment, say X = Y, is covered by the case of ( = )
where  is not a star instruction. Therefore, (X = Y) = 1.

Constraints
Your WEB program should complete the execution in 70,000 steps. If the number of steps exceeds the limit,
70,000 steps, the auto-judge and the simulator force to terminate the WEB program — it is regarded as time
out.

	Internet-2024-cover
	Internet-A-Cleaning Robot-final
	Internet-B-ComplexityMeasure-final
	Internet-C-Covers-Final
	Internet-D-DiagonalFlipping-Final
	Internet-E-MatrixGame-final
	Internet-E-MatrixGame-한글-final
	Internet-F-MiningRights-final
	Internet-F-MiningRights-한글-final
	Internet-G-NewMegacity-final
	Internet-H-NumberAllocation-final
	Internet-H-NumberAllocation-한글-final
	Internet-I-PolygonDiscovery-final
	Internet-J-TwoRings-final
	Internet-K-WebMachine-final

