
icpc global
programming
tools sponsor

Official Problem Set

ICPC Asia Pacific & Southeast Regionals 2019

Regional Contest
ICPC Asia Seoul

icpcinternational collegiate
programming contest

icpc.foundation

ICPC 2019 Asia Regional – Seoul

Problem Set

Please check that you have 12 problems that are spanned across 24 pages in total (including the
front page and this page).

A. Fire on Field (2 pages)

B. Gene Tree (2 pages)

C. Islands (2 pages)

D. Ladder Game (2 pages)

E. Network Vulnerability (2 pages)

F. Quadrilaterals (2 pages)

G. Same Color (1 page)

H. Strike Zone (2 pages)

I. Thread Knots (2 pages)

J. Triangulation (2 pages)

K. Washer (1 page)

L. What’s Mine is Mine (2 pages)

The memory limits for the twelve problems are all the same, 512MB.

ICPC 2019 Asia Regional – Seoul Problem A: Fire on Field

Problem A
Fire on Field

Time Limit: 1 Second

We define 𝐴𝐴 as a sequence of positive integers like the following.

Let 𝐴𝐴[0] = 1,𝐴𝐴[1] = 1. For a positive integer 𝑖𝑖 ≥ 2, 𝐴𝐴[𝑖𝑖] is the smallest positive integer under the
condition that no three terms 𝐴𝐴[𝑖𝑖 − 2𝑘𝑘], 𝐴𝐴[𝑖𝑖 − 𝑘𝑘], and 𝐴𝐴[𝑖𝑖] form an arithmetic progression for any
integer 𝑘𝑘 > 0 such that 𝑖𝑖 − 2𝑘𝑘 ≥ 0, that is, 𝐴𝐴[𝑖𝑖] − 𝐴𝐴[𝑖𝑖 − 𝑘𝑘] ≠ 𝐴𝐴[𝑖𝑖 − 𝑘𝑘] − 𝐴𝐴[𝑖𝑖 − 2𝑘𝑘].

The sequence is uniquely determined like the following sequence: 𝐴𝐴[0] = 1, 𝐴𝐴[1] = 1, 𝐴𝐴[2] = 2, 𝐴𝐴[3] = 1,
𝐴𝐴[4] = 1, 𝐴𝐴[5] = 2, 𝐴𝐴[6] = 2, 𝐴𝐴[7] = 4, 𝐴𝐴[8] = 4, etc. The sequence element 𝐴𝐴[2] cannot be 1 since
otherwise 𝐴𝐴[0] = 1,𝐴𝐴[1] = 1,𝐴𝐴[2] = 1 form an arithmetic progression; here 𝑖𝑖 = 2 and 𝑘𝑘 = 1. If 𝐴𝐴[2] is any
integer larger than one, then the condition is satisfied. Therefore, 𝐴𝐴[2] should be 2 which is the smallest positive
integer among the possible ones. Similarly, it is easy to know that 𝐴𝐴[3] = 1. The sequence element 𝐴𝐴[4] cannot
be 3 since otherwise 𝐴𝐴[4] − 𝐴𝐴[4 − 2] = 𝐴𝐴[4 − 2] − 𝐴𝐴[4 − 2 × 2] ; here 𝑖𝑖 = 4 and 𝑘𝑘 = 2 . Other natural
numbers like 1, 2 and 4 are also possible for 𝐴𝐴[4], but the smallest one is 1. Therefore, 𝐴𝐴[4] = 1.

This sequence is called “fire on field” or “forest fire” since the scatter plot of the sequence looks like spreading
fire on a field. See the figure below.

Given a non-negative integer 𝑛𝑛, write a program to output 𝐴𝐴[𝑛𝑛].

Input
Your program is to read from standard input. The input consists of one line containing one non-negative integer
𝑛𝑛 (0 ≤ 𝑛𝑛 ≤ 1,000).

ICPC 2019 Asia Regional – Seoul Problem A: Fire on Field

Output
Your program is to write to standard output. Print exactly one line. The line should contain 𝐴𝐴[𝑛𝑛].

The following shows sample inputs and outputs for three test cases.

Sample Input 1 Output for the Sample Input 1
5 2

Sample Input 2 Output for the Sample Input 2
8 4

Sample Input 3 Output for the Sample Input 3
100 4

ICPC 2019 Asia Regional – Seoul Problem B: Gene Tree

Problem B
Gene Tree

Time Limit: 1 Second

A gene tree is a tree showing the evolution of various genes or biological species. A gene tree represents the
relatedness of specific genes stored at the leaf nodes without assumption about their ancestry. Leaf nodes
represent genes, called taxa, and internal nodes represent putative ancestral taxa. Each edge in the tree is
associated with a positive integer, phylogenetic length, which quantifies the evolutionary distance between
two nodes of the edge. For example, the left figure below shows a gene tree with six leaf nodes, which
approximates the relation among six taxa, and the right one shows a gene tree with four taxa.

Figure B.1: Unrooted gene trees ଵܶ and ଶܶ.

Like the trees ଵܶ and ଶܶ above, gene trees are modeled as unrooted trees where each internal node (non-leaf
node) has degree three. A path-length between two leaf nodes is the sum of the phylogenetic lengths of the
edges along the unique path between them. In ଵܶ, the path-length between Human and Cow is 2 + 3 = 5 and
the path-length between Human and Goldfish is 2 + 4 + 8 + 10 = 24. These lengths indicate that Human is
much closer to Cow than to Goldfish genetically. From ଶܶ, we can guess that the primate closest to Human is
Chimpanzee.

Researchers are interested in measuring the distance between genes in the tree. A famous distance measure is
the sum of squared path-lengths of all unordered leaf pairs. More precisely, such a distance ݀(ܶ) is defined as
follows:

݀(ܶ) = ௨,௩
ଶ

୳୬୭୰ୢୣ୰ୣୢ ୮ୟ୧୰ (௨,௩)

where ௨,௩ is a path-length between two leaf nodes ݑ and ݒ in ܶ. Note that ݀(ܶ) is the sum of the squared
path-lengths ௨,௩

ଶ over all unordered leaf pairs ݑ and ݒ in ܶ. For the gene tree ଶܶ in Figure B.1, there are six
paths over all unordered leaf pairs, (Human, Chimpanzee), (Human, Gorilla), (Human, Orangutan),
(Chimpanzee, Gorilla), (Chimpanzee, Orangutan), and (Gorilla, Orangutan). The sum of squared path-lengths
is 2ଶ + 4ଶ + 5ଶ + 4ଶ + 5ଶ + 5ଶ = 111, so ݀(ଶܶ) = 111.

ICPC 2019 Asia Regional – Seoul Problem B: Gene Tree

Given an unrooted gene tree ܶ, write a program to output ݀(ܶ).

Input
Your program is to read from standard input. The input starts with a line containing an integer 𝑛𝑛 (4 ≤ 𝑛𝑛 ≤
100,000), where 𝑛𝑛 is the number of nodes of the input gene tree ܶ. Then ܶ has 𝑛𝑛 − 1 edges. The nodes of ܶ
are numbered from 1 to 𝑛𝑛. The following 𝑛𝑛 − 1 lines represent 𝑛𝑛 − 1 edges of ܶ, where each line contains
three non-negative integers ܽ, ܾ, and ݈ (1 ≤ ܽ ≠ ܾ ≤ 𝑛𝑛, 1 ≤ ݈ ≤ 50) where two nodes ܽ and ܾ form an edge
with phylogenetic length ݈.

Output
Your program is to write to standard output. Print exactly one line. The line should contain one positive
integer d(ܶ).

The following shows sample input and output for three test cases.

Sample Input 1 Output for the Sample Input 1
4
1 4 1
4 3 1
2 4 1

12

Sample Input 2 Output for the Sample Input 2
6
1 5 1
5 2 1
5 6 1
6 4 3
6 3 2

111

Sample Input 3

Output for the Sample Input 3

10
1 2 10
10 2 7
3 2 8
3 9 3
9 8 2
7 9 1
6 4 3
4 5 2
3 4 4

4709

ICPC 2019 Asia Regional – Seoul Problem C: Islands

Problem C
Islands

Time Limit: 1 Second

There are twin islands with convex coastlines in the southern sea of the Korean Peninsula. There are 𝑛𝑛
villages on the coastline in each island. All villages are numbered from 1 to 𝑛𝑛. These numbers have been
randomly assigned to villages regardless of their locations. A sequence of the village numbers in clockwise
direction on the coastline of an island is called a coastline sequence. Considering a village as a point, the
closed polyline connecting all villages in order of a coastline sequence forms the boundary of a convex
polygon.

At a meeting of village representatives from both islands, they decided to construct a road inside each island
satisfying the following three conditions.

1. Each road passes through all villages of each island exactly once.
2. Each road is not self-intersecting.
3. Two road sequences of both islands are same, where a road sequence is a sequence of the village

numbers along the road from the start to the end.

For example, suppose that there are six villages in each island and that two coastline sequences of two islands
are (1, 5, 2, 4, 6, 3) and (3, 4, 5, 2, 6, 1), respectively. Then two roads with a road sequence (3, 1, 6, 4, 5, 2)
satisfy the above conditions. See the figure below. If two coastline sequences are (1, 2, 3, 4, 5) and (1, 3, 5, 2,
4), there is no road sequence which satisfies the above conditions.

Given two coastline sequences of two islands, write a program to find a road sequence satisfying the above
conditions if it exists.

Input
Your program is to read from standard input. The input starts with a line containing an integer 𝑛𝑛 (5 ≤ 𝑛𝑛 ≤
100,000), where 𝑛𝑛 is the number of villages in each island. The villages are numbered from 1 to 𝑛𝑛. In the
following two lines, each line contains 𝑛𝑛 integers which represent a coastline sequence of each island.

ICPC 2019 Asia Regional – Seoul Problem C: Islands

Output
Your program is to write to standard output. Print exactly one line. The line should contain 𝑛𝑛 integers which
represent a road sequence satisfying above conditions if it exists, otherwise -1. If there are one or more
solutions, then print an arbitrary one.

The following shows sample input and output for two test cases.

Sample Input 1 Output for the Sample Input 1
6
1 5 2 4 6 3
3 4 5 2 6 1

3 1 6 4 5 2

Sample Input 2 Output for the Sample Input 2
5
1 2 3 4 5
1 3 5 2 4

-1

ICPC 2019 Asia Regional – Seoul Problem D: Ladder Game

Problem D
Ladder Game
Time Limit: 1 Second

Consider a situation that we need to distribute 𝑛𝑛 gifts to 𝑛𝑛 people fairly and randomly. For this purpose one
ancient technique is popular in Asia, and is usually used to represent a random permutation. Chinese call it
Ghost Leg (畫畫畫), Japanese Budda Lots (あみだくじ) and Korean Ladder Game (사다리타기). We first start
with some terms. This ladder consists of several vertical poles and horizontal bars connecting two adjacent
vertical poles. From the top of each vertical pole, a path is traced through the ladder using the following three
steps:

1. When tracing a vertical pole, continue downwards until an end of the first bar is
reached, then continue along the bar.

2. When tracing a bar, continue along it until the end of the bar is reached, then continue
down the vertical pole.

3. Repeat Step 1 and Step 2 until the bottom of a vertical pole is reached.

Figure D.1(a) shows a ladder ܮ with three vertical poles and three bars. The vertical poles are numbered with
1, … ,𝑛𝑛 from left to right. The paths of tracing these three vertical poles are shown in (b), (c), and (d). The input
(1, 2, 3) is permuted finally to ߨ = (3, 2, 1) by the ladder ܮ. Note that we do not allow the case that two
immediately adjacent horizontal bars meet at some point (like ݓ in Figure D.1(e)) because there is no unique
way in tracing at the point.

Figure D.1: Tracing the ladder.

You are given a ladder ܮ which achieves a permutation ߨ. If the permutation ߨ is unchanged after removing
a bar, then the bar is said to be redundant for ߨ . Your task is to find all redundant bars for ߨ . This is equivalent
to constructing a minimal ladder by removing all redundant bars from ܮ. In the minimal ladder of ܮ, the removal
of any bar from the ladder gives a different permutation from ߨ.

Input
Your program is to read from standard input. The input starts with a line containing one integers 𝑛𝑛 (3 ≤ 𝑛𝑛 ≤
50), where 𝑛𝑛 is the number of vertical poles. The vertical poles are ordered from left to right. Let ݀, denote
the depth of the ݆-th bar between the 𝑖𝑖-th and (𝑖𝑖 + 1)-th poles from the top, which is an integer between 1 and
1,000. In the following 𝑛𝑛 − 1 lines, the 𝑖𝑖-th line contains the sequence of depths ݀,, where 1 ≤ 𝑖𝑖 < 𝑛𝑛, ݆ ≥ 1

ICPC 2019 Asia Regional – Seoul Problem D: Ladder Game

and ݀, < ݀,ାଵ. Notice that this depth sequence is ended with zero (0), which is not a depth but just a marker
to indicate the end of the sequence. See Figure D.2 for illustration.

(a) Depth ݀, of the bars (b) Sample input 1 (c) Sample input 2

Figure D.2: Depths of the bars between two adjacent poles in the ladder.

Output
Your program is to write to standard output. Print a set of the bars to be remained in a minimal ladder for ߨ .
The first line should contain 𝑘𝑘, the number of the bars remained in the minimal ladder. Then, each line of the
following 𝑘𝑘 lines should contain two indices 𝑖𝑖 and ݆ of ݀, of the bar in the minimal ladder. Note that the
minimal ladder is not unique.

The following shows sample input and output for two test cases in Figure D.2(b) and Figure D.2(c).

Sample Input 1 Output for the Sample Input 1
6
2 5 8 0
6 0
1 10 0
4 6 11 0
5 7 9 0

8
3 1
4 1
5 1
2 1
4 2
1 3
3 2
4 3

Sample Input 2 Output for the Sample Input 2
5
2 6 9 0
3 7 8 11 0
2 4 9 0
6 10 0

6
1 1
3 1
2 1
4 1
3 3
2 4

ICPC 2019 Asia Regional – Seoul Problem E: Network Vulnerability

Problem E
Network Vulnerability

Time Limit: 3 Seconds

Network vulnerability refers to how much the network performance reduces in various cases of disruptions,
such as natural disasters, element failures, or adversarial attacks. A network is frequently represented as a
graph, in which the vertices and edges correspond to nodes and links, respectively. So the terms network and
graph are used interchangeably here. The connectivity, which is defined to be the minimum number of
vertices whose deletion results in a disconnected graph or a one-vertex graph, is recognized as the most
important measure to evaluate the vulnerability of a network.

Nonetheless, the connectivity only partly reflects the resistance of a graph to the deletion of vertices.
Accordingly, there have been many studies proposing other metrics to account for the network vulnerability,
among which the toughness and the scattering number appear to be the most popular. The underlying notion
of the toughness and scattering number is the maximum number of connected components resulting from
removing 𝑘𝑘 vertices from a graph. Let ܿ(ܩ) denote the maximum number of connected components obtained
by removing exactly 𝑘𝑘 vertices from a graph ܩ. It is unfortunate that given a graph ܩ and a positive integer 𝑘𝑘,
the problem of determining ܿ(ܩ) is computationally intractable.

For some graph classes like interval graphs, however, ܿ(ܩ) can be computed in polynomial time. An interval
graph is the intersection graph of a family of (closed) intervals on the real line, where two vertices are
connected with an edge if and only if their corresponding intervals intersect. The family is usually called an
interval representation for the graph. See Figure E.1 for an example of an interval graph and its interval
representation.

 (a) an interval graph (b) an interval representation of the graph of (a)

Figure E.1: An interval graph and its interval representation.

Given an interval representation of an interval graph ܩ with 𝑛𝑛 vertices, your job is to write an efficient
running program for computing ܿ(ܩ) for all 𝑘𝑘 included in {0, 1, … ,𝑛𝑛 − 1}. If the interval representation
shown in Figure E.1(b), for example, is given, then ܿ(ܩ), ܿଵ(ܩ), ܿଶ(ܩ), ܿଷ(ܩ), ܿସ(ܩ), ܿହ(ܩ), ܿ(ܩ), ܿ(ܩ)
are 1, 1, 1, 2, 2, 3, 2, 1, respectively.

Input
Your program is to read from standard input. The first line contains a positive integer 𝑛𝑛 representing the
number of intervals, where 𝑛𝑛 ≤ 2,000. In the following 𝑛𝑛 lines, each contains a pair of left and right endpoints
of an interval. You may assume that the endpoints, left or right, of intervals are integers between
−100,000,000 and 100,000,000, inclusive.

ICPC 2019 Asia Regional – Seoul Problem E: Network Vulnerability

Output
Your program is to write to standard output. Print exactly one line which contains the sequence ܿ(ܩ), ܿଵ(ܩ),
…, ܿିଵ(ܩ) of 𝑛𝑛 numbers separated by a single space.

The following shows sample input and output for four test cases.

Sample Input 1 Output for the Sample Input 1
8
3 8
1 8
1 7
1 6
4 8
1 2
3 5
7 8

1 1 1 2 2 3 2 1

Sample Input 2 Output for the Sample Input 2
3
-2 -2
-2 7
-2 7

1 1 1

Sample Input 3 Output for the Sample Input 3
4
-1 -1
3 4
5 6
7 8

4 3 2 1

Sample Input 4 Output for the Sample Input 4
5
1 2
2 3
3 4
6 7
7 8

2 3 3 2 1

ICPC 2019 Asia Regional – Seoul Problem F: Quadrilaterals

Problem F
Quadrilaterals

Time Limit: 1.7 Seconds

A quadrilateral is a polygon with exactly four distinct corners and four distinct sides, without any crossing
between its sides. A quadrilateral is called convex if all the inner angles at its corners are less than 180 degrees,
or called non-convex, otherwise. See the illustration below for a convex quadrilateral (left) and a non-convex
quadrilateral (right).

In a test problem, you are given a set ܲ of 𝑛𝑛 points in the plane, no three of which are collinear, and asked to
find as many quadrilaterals as possible by connecting four points from ܲ, while each point in ܲ can be used
limitlessly many times and those quadrilaterals you find may freely overlap each other. You will earn different
credits for each quadrilateral you find, depending on its shape and area. In principle, you earn more credits for
convex quadrilaterals and for quadrilaterals with minimum area.

More precisely, the rules for credits are as follows, where ܽ denotes the minimum over the areas of all
possible quadrilaterals formed by connecting four points in ܲ:

• For each distinct convex quadrilateral with area exactly ܽ, you earn 4 credits.
• For each distinct non-convex quadrilateral with area exactly ܽ, you earn 3 credits.
• For each distinct convex quadrilateral with area strictly larger than ܽ, you earn 2 credits.
• For each distinct non-convex quadrilateral with area strictly larger than ܽ, you earn 1 credit.

Note that two quadrilaterals are distinct unless the corners and sides of one are exactly the same to the other’s,
and that there may be two or more quadrilaterals of the minimum area ܽ.

You of course want to find all possible quadrilaterals and earn the maximum possible total credits. Given a set
ܲ of 𝑛𝑛 points in the plane, write a program that outputs the maximum possible total credits you can earn when
you find all possible quadrilaterals from the set ܲ.

Input
Your program is to read from standard input. The input starts with a line containing an integer 𝑛𝑛 (4 ≤ 𝑛𝑛 ≤
1,000), where 𝑛𝑛 denotes the number of points in the set ܲ. In the following 𝑛𝑛 lines, each line consists of two
integers, ranging −10ଽ to 10ଽ, representing the coordinates of a point in ܲ. There are no three points in ܲ that
are collinear.

ICPC 2019 Asia Regional – Seoul Problem F: Quadrilaterals

Output
Your program is to write to standard output. Print exactly one line consisting of a single integer that represents
the maximum possible total credits you can earn from the set ܲ.

The following shows sample input and output for four test cases.

Sample Input 1 Output for the Sample Input 1
4
0 0
1 0
0 1
1 1

4

Sample Input 2 Output for the Sample Input 2
4
0 0
10 0
5 10
5 8

5

Sample Input 3 Output for the Sample Input 3
4
0 0
10 0
5 10
5 3

7

Sample Input 4 Output for the Sample Input 4
5
0 0
0 5
5 0
5 5
4 2

14

ICPC 2019 Asia Regional –Seoul Problem G: Same Color

Problem G
Same Color

Time Limit: 0.5 Seconds

There are 𝑛𝑛 distinct points with ݉ colors on the line, where ݉ ≤ 𝑛𝑛. Let ܵ be the set of those points. We want
to select a non-empty subset ܥ ك ܵ that satisfies the following:

For every point in ܵ − has the ܥ among points in the closest point of ,ܥ not belonging to ,ܥ
same color as . Of course, if there are more than one closest point of in ܥ, then it is sufficient
that one of them has the same color as .

For example, there are six points labeled by 1 to 6 with two colors in Figure G.1. Points 4 and 5 are red and the
others blue. The set {2, 4, 6} satisfies the above property. But the set {2, 4} does not satisfy the property, because
the closest point of point 6 in {2, 4} is point 4, which is different from the color of point 6. In fact, the set {2, 4, 6} is
a minimum cardinality subset to satisfy the property.

Figure G.1: Six colored points on a line

Given 𝑛𝑛 distinct points on the line and ݉ their colors, write a program to find a non-empty subset ܥ of ܵ with
minimum cardinality satisfying the above property and to output the minimum cardinality.

Input
Your program is to read from standard input. The input starts with a line containing two integers, ݉ and 𝑛𝑛
(1 ≤ ݉ ≤ 𝑛𝑛 ≤ 100,000), where ݉ is the number of colors and 𝑛𝑛 is the number of points. The points are
numbered 1 to 𝑛𝑛 from left to right on the line, and the colors are numbered 1 to ݉. The second line contains a
sequence of sorted 𝑛𝑛 integers in increasing manner, where the 𝑖𝑖-th number is the coordinate of the point 𝑖𝑖. The
coordinates ݔ of points satisfy 0 ≤ ݔ ≤ 10ଽ and are all distinct. The third line contains a sequence of 𝑛𝑛
integers, where the 𝑖𝑖-th number is the color of the point 𝑖𝑖, which is between 1 and ݉.

Output
Your program is to write to standard output. Print exactly one line. The line should contain the minimum
cardinality of a non-empty subset ܥ of ܵ to satisfy the above property.

The following shows sample input and output for two test cases.

Sample Input 1 Output for the Sample Input 1
2 6
0 3 4 7 8 11
1 1 1 2 2 1

3

Sample Input 2 Output for the Sample Input 2
2 6
0 3 4 7 8 11
1 2 1 2 2 1

5

ICPC 2019 Asia Regional – Seoul Problem H: Strike Zone

Problem H
Strike Zone

Time Limit: 1 Second

The strike zone in baseball is the volume of space which a baseball must pass through in order to be called a
strike, if the batter does not swing. A baseball that misses the strike zone is called a ball, if the batter does not
swing. Figure H.1 shows the locations of baseballs at plate which were captured by a ball tracking device
during a baseball match. Each blue point was called a strike and each red point was called a ball during the
match. This may motivate us to define a rectangular region that represents the strike zone of the match, by
analyzing such a ball tracking data of the match.

Figure H.1: The locations of baseballs at plate during a baseball match.

Blue points were called strikes and red points were called balls.

In this problem, you are given two sets, ଵܲ and ଶܲ, of points in the plane and two positive constants ܿଵ and ܿଶ.
You are asked to find an axis-parallel rectangle ܴ that maximizes the evaluation function eval(ܴ) = ܿଵ × ݏ −
ܿଶ × ܾ, where ݏ is the number of points in ଵܲ ת ܴ and ܾ is the number of points in ଶܲ ת ܴ.

Input
Your program is to read from standard input. The input starts with a line containing an integer 𝑛𝑛ଵ (1 ≤ 𝑛𝑛ଵ ≤
1,000), where 𝑛𝑛ଵ denotes the number of points in ଵܲ. In the following 𝑛𝑛ଵ lines, each line consists of two
integers, ranging −10ଽ to 10ଽ, representing the coordinates of a point in ଵܲ. The next line contains an integer
𝑛𝑛ଶ (1 ≤ 𝑛𝑛ଶ ≤ 1,000), where 𝑛𝑛ଶ denotes the number of points in ଶܲ . In the following 𝑛𝑛ଶ lines, each line
consists of two integers, ranging −10ଽ to 10ଽ, representing the coordinates of a point in ଶܲ. There are no two
points in ଵܲ ଶܲ that share the same ݔ or ݕ coordinate. Then the next line consists of two integers, ܿଵ and ܿଶ,
ranging 1 to 10,000.

Output
Your program is to write to standard output. Print exactly one line consisting of one integer that is eval(ܴ),
where ܴ is an axis-parallel rectangle with the maximum possible eval value for ଵܲ and ଶܲ with respect to ܿଵ
and ܿଶ.

ICPC 2019 Asia Regional – Seoul Problem H: Strike Zone

The following shows sample input and output for two test cases.

Sample Input 1 Output for the Sample Input 1
2
-1 -1
4 4
2
0 0
2 2
5 2

6

Sample Input 2 Output for the Sample Input 2
3
0 5
3 3
8 -1
3
1 4
6 0
7 1
3 2

4

ICPC 2019 Asia Regional – Seoul Problem I: Thread Knots

Problem I
Thread Knots
Time Limit: 1 Second

There are 𝑛𝑛 threads on the ݔ-axis. The length of the 𝑖𝑖-th thread, say ܶ, is denoted by ݈ and the location of its
starting point by ݔ, both being integers. We want to make a knot in each thread. The location of the knot must
also be an integer. The knot can be made at any point in the thread and it is assumed that the length of the thread
is not reduced by the knot. You can assume that no thread is totally contained by another, which means that
there are no two threads ܶ and ܶ (𝑖𝑖 ≠ ݆) such that ݔ ≤ +݈ݔ andݔ ≤ +ݔ ݈.

We want to determine the location of the knot for each thread in order to make the distance between the closest
two neighboring knots as big as possible.

For example, the figures below show the locations of the knots for six threads. The location of a knot is denoted
by a point. All the threads actually lie on the ݔ-axis, however, they are drawn separately to distinguish each
other. In Figure I.1, the distance between the closest two knots is 20. However, if we make the knot for ଶܶ at
different location as shown in Figure I.2, the distance between the closest two knots becomes 25, which is what
this problem requests.

Figure I.1: An example of knots for 6 threads.

Figure I.2: Another example with different location of knot for ଶܶ.

Given information about the 𝑛𝑛 threads, write a program that calculates the maximum distance between two
closest knots.

ICPC 2019 Asia Regional – Seoul Problem I: Thread Knots

Input
Your program is to read from standard input. The input starts with a line containing one integer, 𝑛𝑛 (2 ≤ 𝑛𝑛 ≤
100,000), where 𝑛𝑛 is the number of threads. In the following 𝑛𝑛 lines, the 𝑖𝑖-th line contains two integers ݔ(0 ≤
ݔ ≤ 10ଽ) and ݈(1 ≤ ݈ ≤ 10ଽ), where ݔ and ݈ denote the location of the starting point and the length of the
𝑖𝑖-th thread, respectively. You can assume that no thread is totally contained by another, which means that there
are no two threads ܶ and ܶ (𝑖𝑖 ≠ ݆) such that ݔ ≤ +݈ݔ andݔ ≤ +ݔ ݈.

Output
Your program is to write to standard output. Print exactly one line. The line should contain an integer which is
the maximum distance between two closest knots.

The following shows sample input and output for three test cases.

Sample Input 1 Output for the Sample Input 1
6
0 67
127 36
110 23
50 51
100 12
158 17

25

Sample Input 2 Output for the Sample Input 2
6
0 40
10 55
45 28
90 40
83 30
120 30

30

Sample Input 3 Output for the Sample Input 3
3
0 20
40 10
100 20

50

ICPC 2019 Asia Regional –Seoul Problem J: Triangulation

Problem J
Triangulation

Time Limit: 1 Second

A regular 𝑛𝑛-sided polygon ܲ can be partitioned into 𝑛𝑛 − 2 triangles by adding non-crossing line segments
connecting two vertices of ܲ. For example, a square can be partitioned into two triangles, a regular pentagon
can be partitioned into three triangles, and a regular hexagon can be partitioned into four triangles. The
resulting set of triangles is called a triangulation of ܲ. There exist two or more triangulations of ܲ if 𝑛𝑛 is
greater than three.

Once a triangulation ܶ of ܲ is chosen, the distance between two triangles ܽ and ܾ in ܶ is defined to be the
number of hops crossing the borders of two adjacent triangles when you travel from ܽ to ܾ. Note that you
must stay inside the polygon ܲ at any time during this travel, that is, it is not allowed to hop crossing the
border of ܲ.

For example, the distance of ܽ and ݀ in the triangulation shown in Figure J.1 is three since the triangles, ܽ, ܾ,
ܿ, and ݀, should be visited to travel from ܽ to ݀, and you have to hop three times crossing borders between
triangles.

The diameter of a triangulation ܶ is the maximum of the distances between all pairs of triangles in ܶ. Write a
program to find a triangulation of a regular 𝑛𝑛-sided polygon ܲ whose diameter is the minimum over all
possible triangulations and print its diameter.

Input
Your program is to read from standard input. The input starts with a line containing 𝑛𝑛 (3 ≤ 𝑛𝑛 ≤ 1,000,000),
where 𝑛𝑛 is the number of sides of the regular 𝑛𝑛-sided polygon.

Output
Your program is to write to standard output. Print exactly one line. The line should contain the minimum
diameter of the triangulations of a regular 𝑛𝑛-sided polygon.

Figure J.1 A triangulation of a regular hexagon

ICPC 2019 Asia Regional –Seoul Problem J: Triangulation

The following shows sample input and output for three test cases.

Sample Input 1 Output for the Sample Input 1
3 0

Sample Input 2 Output for the Sample Input 2
4 1

Sample Input 3 Output for the Sample Input 3
6 2

ICPC 2019 Asia Regional – Seoul Problem K: Washer

Problem K

Washer
Time Limit: 1 Second

You have 𝑛𝑛 clothes and a washer. The washer is large enough to wash all clothes at once. However, we should
worry about the color transfer: if we put clothes of different colors in the washer, the dye from one may stain
another. Precisely, let ݎ,݃ , ܾ denote the amount of red, green, blue color of the 𝑖𝑖-th clothes. When 𝑛𝑛 clothes
are washed together, the color transfer ܿ is defined by

ܿ = (ݎ − ଶ(ݎ + (݃ − ݃)ଶ + (ܾ − ܾ)ଶ

ୀଵ

where ݎ, ݃, and ܾ are the averages of ݎ, ݃, and ܾ, respectively. The 𝑖𝑖-th clothes with ݎ, ݃, and ܾ is defined
as a point (ݎ,݃ , ܾ) in 3-dimensional RGB space. You can assume that no three points (clothes) are on a
same line and no four points (clothes) are on a same plane in RGB space.

The washer consumes a lot of electricity, and you have to partition 𝑛𝑛 clothes into at most 𝑘𝑘 groups, and run
the washer for each group. The total color transfer is the sum of color transfers from each run. Given the color
information of 𝑛𝑛 clothes and 𝑘𝑘, write a program to calculate the minimum total color transfer.

Input
Your program is to read from standard input. The first line contains two integers 𝑛𝑛 (1 ≤ 𝑛𝑛 ≤ 100) and 𝑘𝑘 (1 ≤
𝑘𝑘 ≤ 2). In the following 𝑛𝑛 lines, the 𝑖𝑖-th line contains three integers ݎ,݃, ܾ (0 ≤ ,݃ݎ , ܾ ≤ 1,000).

Output
Your program is to write to standard output. Print exactly one line containing the minimum total color transfer,
rounded to the sixth decimal point.

Sample Input 1 Output for the Sample Input 1
2 1
36 16 85
74 87 38

4347.000000

Sample Input 2 Output for the Sample Input 2
1 2
12 26 90

0.000000

Sample Input 3 Output for the Sample Input 3
3 2
93 50 26
40 0 77
99 10 29

822.500000

ICPC 2019 Asia Regional – Seoul Problem L: What’s Mine is Mine

Problem L
What’s Mine is Mine

Time Limit: 0.5 Seconds

The hot new video game “Mining Simulator” has just been released. In the game, rare earth mineral ores
appear at certain times and you can mine them when they appear. After mining, you can later turn in the
minerals for money. The quantity of mineral available during an appearance is proportional to the duration of
the appearance and the price per unit of each mineral is decided beforehand.

The game contains a geological sensor that determines times when mineral ores will appear during a given
day and at the beginning of each day you have a price list for each mineral. Assuming you mine out the
mineral in exactly the amount of time that it is available, you cannot partially mine minerals (you must either
not mine any of a given occurrence or mine all of it) and you can only mine one ore occurrence at a time.

Given a list of the prices of ݉ minerals and 𝑛𝑛 ore occurrences during a day, write a program to output the
maximum amount of money you can earn from mining on that day. The mineral amount is the appearance
time (end time – start time). You can mine an ore right after finishing the previous mining. In other words, one
mined-ore’s end time can be same as another mined-ore’s start time. In the case depicted in Figure L.1, if you
choose the mineral of type 1 that appears at time 2 and disappears at time 5, then the mineral amount is 5 −
2 = 3 and you earn 3 × 2 = 6. Next, if you choose the mineral of type 2 that appears at time 7 and disappears
at time 11, then the mineral amount is 11− 7 = 4 and you earn 4 × 3 = 12. Therefore, you earn 18 in total.

Figure L.1: A mining example. For each mineral (ݏ, ݁, is the start time, ݁ is the end ݏ ,(ݐ
time and ݐ is the mineral type. Therefore, the mineral amount is ݁ − and the possible ݏ
earning is (݁ − (ݏ × .ᇱs priceݐ

Input
Your program is to read from standard input. The input starts with a line containing two integers, ݉ and 𝑛𝑛
(1 ≤ ݉ ≤ 100, 1 ≤ 𝑛𝑛 ≤ 10,000), where ݉ is the number of types of minerals and 𝑛𝑛 is the number of ore
occurrences during the day. The mineral types are labeled from 1 to ݉. The following ݉ lines contain a single

ICPC 2019 Asia Regional – Seoul Problem L: What’s Mine is Mine

integer corresponding to the price of one unit of the 𝑖𝑖-th mineral type on that day (the price is between 1 and
10,000). The following 𝑛𝑛 lines represent ore occurrences. Each line contains three integers, ݐ ,݁ ,ݏ where ݏ is
the start time, ݁ is the end time and ݐ is the mineral type in each ore occurrence with 0 < ݏ < ݁ < 15,000 and
1 ≤ ݐ ≤ ݉. The amount of mineral at each occurrence is ݁ − .ݏ

Output
Your program is to write to standard output. Print exactly one line. The line should contain the maximum
amount of money that can be earned on that day.

The following shows sample input and output for three test cases.

Sample Input 1 Output for the Sample Input 1
2 5
2
3
2 5 1
4 5 2
4 6 1
7 11 2
6 10 1

18

Sample Input 2 Output for the Sample Input 2
3 5
2
3
1
1 4 1
3 6 3
5 8 2
7 10 1
9 12 2

24

Sample Input 3 Output for the Sample Input 3
5 7
1
2
3
4
5
1 5 2
3 8 1
2 4 3
3 9 2
4 10 5
7 11 4
5 7 3

36

