
 
 
 
 
 
 
 
 
 

ICPC 2018 Asia Regional – Seoul 

Problem Set 
 
 
Please check that you have 12 problems that are spanned across 24 pages in total (including this 
cover page). 
 

A. Circuits    (2 pages)  

B. Cosmetic Survey  (2 pages)  

C. Disks Arrangement  (2 pages) 

D. Go Latin    (1 page) 

E. LED    (2 pages)  

F. Parentheses   (2 pages)  

G. Secret Code   (2 pages)  

H. Simple Polygon   (2 pages) 

I. Square Root   (2 pages) 

J. Starwars    (2 pages) 

K. TV Show Game   (2 pages) 

L. Working Plan   (2 pages) 

 
 
The memory limits for the twelve problems are all the same, 512MB. 
 



 
 
 
 
 
 
 
 
 

ICPC 2018 Asia Regional –Seoul   Problem A: Circuits 

Problem A 
Circuits 

Time Limit: 1 Second 
 
 

There are a number of electronic circuits, such as CPU’s, ROM’s, RAM’s, to be printed in a single chip 
consisting of multiple layers. Due to some design restriction, there can be only two electrical wires that are 
horizontal segments. Your job is to find two horizontal wires that together connect as many circuits as 
possible so that the electric signals go through the circuits.  
 
This problem can be stated formally as follows. There are 𝑛𝑛 axis-aligned rectangles in the plane. Each of the 
rectangles represents a circuit to be printed in the chip. The rectangles may overlap each other. You are 
supposed to find two horizontal lines such that the total number of rectangles intersected by the two lines is 
maximized. We also say that a rectangle is intersected by a horizontal line if the line contains the top side or 
the bottom side of the rectangle. If a rectangle is intersected by both the lines, it is counted only once for the 
total number.  
 
For example, let’s consider 5 rectangles shown in Figure A.1. Figure A.1(c) shows two horizontal lines (red 
dashed lines) that intersect all 5 rectangles while the two horizontal lines (red dashed lines) in Figure A.1(b) 
intersect 4 rectangles.  
 

 
 

Figure A.1: (a) 5 axis-aligned rectangles. (b) Two horizontal lines that intersect 4 rectangles. (c) Two horizontal lines that 
intersect 5 rectangles. 
 
Given a set of axis-aligned rectangles, write a program to find two horizontal lines such that the total number 
of rectangles intersected by the two lines is maximized. 
 
 
Input 
Your program is to read from standard input. The first line contains a positive integer 𝑛𝑛 representing the 
number of axis-aligned rectangles in the plane, where 3 ≤ 𝑛𝑛 ≤ 100,000. It is followed by 𝑛𝑛  lines, each 
contains four integers 𝑢𝑢𝑥𝑥 ,𝑢𝑢𝑦𝑦,𝑣𝑣𝑥𝑥 , and 𝑣𝑣𝑦𝑦  (with 𝑢𝑢𝑥𝑥 <  𝑣𝑣𝑥𝑥  and 𝑢𝑢𝑦𝑦 >  𝑣𝑣𝑦𝑦 ) representing the (𝑥𝑥,𝑦𝑦)-coordinates, 
(𝑢𝑢𝑥𝑥,𝑢𝑢𝑦𝑦), of the top-left corner and the (𝑥𝑥,𝑦𝑦)-coordinates, (𝑣𝑣𝑥𝑥,𝑣𝑣𝑦𝑦), of the bottom-right corner of an axis-
aligned rectangle, where −10,000,000 ≤ 𝑢𝑢𝑥𝑥 ,𝑢𝑢𝑦𝑦,𝑣𝑣𝑥𝑥, 𝑣𝑣𝑦𝑦 ≤ 10,000,000.  
 
 



 
ICPC 2018  Asia Regional –Seoul   Problem A: Circuits 

Output 
Your program is to write to standard output. Print exactly one line. The line should contain the maximum total 
number of rectangles that can be intersected by two horizontal lines. 
 
The following shows sample input and output for two test cases. 
 
 
Sample Input 1  Output for the Sample Input 1 
5 
0 13 4 4 
2 14 11 9 
7 17 12 12 
3 5 16 0 
5 2 13 1 

5 

 
Sample Input 2 Output for the Sample Input 2 
5 
0 4 4 0 
1 3 3 1 
5 8 9 4 
0 12 4 8 
1 11 3 9 

4 

 
 



 
 
 
 
 
 
 
 
 

ICPC 2018 Asia Regional –Seoul   Problem B: Cosmetic Survey 

Problem B 
Cosmetic Survey 
Time Limit: 1.5 Seconds 

 
 
ICP(International Cosmetic Perfection) Company plans to survey the preferences of new ݉ cosmetics in order 
to know which cosmetic is the most preferred. For this survey, ICPC selected 𝑛𝑛 people as evaluators. Each 
evaluator must submit an ordered list of the preferences on those ݉ cosmetics. Each evaluator can rank the 
cosmetics as follows: 

y An evaluator can rank cosmetics with positive integer numbers, but the positive integers are not 
necessarily consecutive. The cosmetics with the smallest positive number are the most preferred ones, 
and the ones with the second smallest positive number are the second most preferred ones, and so on. 

y An evaluator can give the same preference to more than one cosmetic. This indicates that this 
evaluator has no preference among those cosmetics. 

y An evaluator may not rank some cosmetics. The unranked cosmetics are marked with number 0 in 
the ordered list. This indicates that this evaluator strictly prefers all ranked to all unranked ones, and 
has no preference among all unranked ones. 

 
For example, the right figure shows an ordered list of the preferences on six 
cosmetics ܨ,ܧ,ܦ,ܥ,ܤ,ܣ  that an evaluator submitted. The cosmetics 
,are ranked with nonconsecutive integers of 1 ܨ,ܧ,ܥ,ܣ 4, 1, 3, respectively. 
The other two cosmetics ܤ and ܦ are not ranked, thus they are marked with 
0 ܣ .  and ܧ  have the same preference, which are the most preferred 
cosmetics because their preference number is the smallest positive integer. 
The unranked ܤ and ܦ are less preferred than the ranked ones. As a result, 
the preference order of this evaluator is ܣ = ܧ ظ ܨ ظ ܥ ظ ܤ =  where ,ܦ
ܺ ظ ܻ means that ܺ is strictly preferred to ܻ and ܺ = ܻ means the same 
preference. 
 
Which cosmetics are the most preferred ones from 𝑛𝑛 evaluators in this preference survey? We must now define 
which one is preferred to another. Let ݀(ܺ,ܻ) be the number of evaluators who strictly prefer ܺ to ܻ. A path 
from ܺ to ܻ is a sequence of distinct cosmetics ܥଵ, … ଵܥ ௞ such thatܥ, = ௞ܥ,ܺ = ܻ, and ݀(1+ݐܥ,ݐܥ) >  (ݐܥ,1+ݐܥ)݀
for every ݐ = 1, … , ݇ − 1. The preference index of this path is defined as the minimum of ݀(1+ݐܥ,ݐܥ) for 1 ≤
ݐ < ݇. For two distinct cosmetics ܺ and ܻ that are connected by a path from ܺ to ܻ, the preference strength 
ܵ(ܺ,ܻ) is the maximum preference index over all paths from ܺ to ܻ. If there is no path from ܺ to ܻ, then 
ܵ(ܺ,ܻ) is defined as zero. Cosmetic ܺ is one of the most preferred cosmetics from this survey if and only if 
ܵ(ܺ,ܻ) ൒ ܵ(ܻ,ܺ) for every ܻ other than ܺ. You note that it has been known for this type of surveys that there 
always exists at least one cosmetic that is preferred the most. 
 
Given preference lists of 𝑛𝑛 evaluators for ݉ cosmetics, write a program to output all the most preferred cosmetics. 
 
 
Input 
Your program is to read from standard input. The input starts with a line containing two integers, ݉ and 𝑛𝑛 
(1 ≤ ݉ ≤ 500, 1 ≤ 𝑛𝑛 ≤ 500), where ݉ is the number of cosmetics and 𝑛𝑛 is the number of evaluators. The 
cosmetics are numbered from 1 to ݉, and the evaluators are numbered from 1 to 𝑛𝑛 . In the following 𝑛𝑛 lines, 
the ݅-th line contains ݉ nonnegative integers that represent the preference values for the ݉ cosmetics of the 
evaluator ݅. The preference values are ordered from the cosmetic 1 to the cosmetic ݉. The zero values in the 



 
ICPC 2018  Asia Regional –Seoul   Problem B: Cosmetic Survey 

list mean that the evaluator unranked the corresponding cosmetics. The preference values are no more than 
10଺. 
 
 
Output 
Your program is to write to standard output. Print exactly one line. The line should contain the numbers of the 
cosmetics that are preferred the most. Such cosmetic numbers must appear in increasing order. 
 
 
The following shows sample input and output for three test cases. 
 
Sample Input 1 Output for the Sample Input 1 
3 4 
1 1 1 
0 0 0 
2 2 2 
3 3 3 

1 2 3 

 
Sample Input 2 Output for the Sample Input 2 
4 5 
1 0 1 1 
1 1 5 2 
2 1 3 6 
0 1 0 1 
1 2 2 2 

1 2 

 
 
Sample Input 3 Output for the Sample Input 3 
5 4 
0 1 0 2 1 
1 7 2 1 0 
4 5 2 3 3 
1 2 9 0 2 

5 

 



 
 
 
 
 
 
 
 
 

ICPC 2018 Asia Regional –Seouol   Problem C: Disks Arrangement 

Problem C 
Disks Arrangement 

Time Limit: 1 Second 
 
 

The 𝑛𝑛 disks shall be placed in a plane such that they touch the x-axis from above and such that no two disks 
overlap. In a valid placement, each disk touches the x-axis in its lowest point. The lowest point is called the 
bottom-point of the disk. The bottom-points induce a linear left-to-right order on the disks. 
 
We will concentrate on a linear instance. The linear instance is a set of disks {ܦଵ,ܦଶ, …  ௡} such that for anyܦ,
ordering ߪ ׷  {1, 2, … ,𝑛𝑛}  ՜ {1, 2, … ,𝑛𝑛} of disks, that is, ܦఙ(ଵ) ܦఙ(ଶ)  ఙ(௡), there is a placement such thatܦڮ 
each disk ܦఙ(௜)  touches only the two disks ܦఙ(௜ିଵ)  and ܦఙ(௜ାଵ)  except for ܦఙ(ଵ)  and ܦఙ(௡) , and ܦఙ(ଵ)  and 
 ఙ(௡ିଵ), respectively. See Figure C.1. An example which is not a linearܦ ఙ(ଶ) andܦ ఙ(௡) touch only the diskܦ
instance is shown in Figure C.2.  

 

               
 
                                         Figure C.1                                                                  Figure C.2 
 
It is known that if the ratio between the largest and smallest radius of the disks is less than four, then the disks 
induce the linear instance. So all the inputs of this problem shall satisfy this condition.  
 
For a given linear instance of disks, find a valid placement to minimize the horizontal distance between the 
leftmost point and the rightmost point of the disks. See Figure C.3.  
 
 

 
 

Figure C.3 
 
 
Input 
Your program is to read from standard input. The input starts with a line containing an integer 𝑛𝑛 (1 ≤ 𝑛𝑛 ≤
1,000), where 𝑛𝑛 is the number of disks. The next line contains 𝑛𝑛 integer numbers each of which is a radius ܽ 
of a disk (1 ≤ ܽ ≤ 1,000,000). Note that the ratio between the largest and smallest radius of the disks is less 
than 4. 
 



 
ICPC 2018  Asia Regional –Seoul   Problem C: Disks Arrangement 

Output 
Your program is to write to standard output. Print exactly one line which contains a real number ݖ that 
represents the minimum horizontal distance ܱܲܶ between the leftmost point and the rightmost point of the 
disks on any valid placement. The output ݖ should be in the format that consists of its integer part, a decimal 
point, and its fractional part, and should satisfy the condition that ܱܲܶ − 10ିହ < ݖ < ܱܲܶ + 10ିହ.  
 
The following shows sample input and output for two test cases. 
 
Sample Input 1 Output for the Sample Input 1 
4 
4 2 7 6 

34.99452 

 
Sample Input 2 Output for the Sample Input 2 
5 
13 7 4 15 10 

90.14124 

 



ICPC 2018 Asia Regional –Seoul   Problem D: Go Latin 

Problem D 
Go Latin 

Time Limit: 0.5 Second 
 
 

There are English words that you want to translate them into pseudo-Latin. To change an English word into 
pseudo-Latin word, you simply change the end of the English word like the following table.  
 

English pseudo-Latin
-a -as 
-i, -y -ios 
-l -les 
-n, -ne -anes 
-o -os 
-r -res 
-t -tas 
-u -us 
-v -ves 
-w -was 

 
If a word is not ended as it stated in the table, put ‘-us’ at the end of the word. For example, a word “cup” is 
translated into “cupus” and a word “water” is translated into “wateres”. 
 
Write a program that translates English words into pseudo-Latin words. 
 
 
Input 
Your program is to read from standard input. The input starts with a line containing an integer, 𝑛 (1 ൑ 𝑛 ൑
20), where 𝑛 is the number of English words. In the following 𝑛 lines, each line contains an English word. 
Words use only lowercase alphabet letters and each word contains at least 3 and at most 30 letters. 
 
 
Output 
Your program is to write to standard output. For an English word, print exactly one pseudo-Latin word in a 
line.  
 
The following shows sample input and output for two test cases. 
 
Sample Input 1 Output for the Sample Input 1 
2 
toy 
engine 

toios 
engianes 

 
Sample Input 2 Output for the Sample Input 2 
3 
cup 
water 
cappuccino 

cupus 
wateres 
cappuccinos 

 



 
 
 
 
 
 
 
 
 

ICPC 2018 Asia Regional – Seoul   Problem E: LED 

Problem E 
LED 

Time Limit: 1.3 Seconds 
 

A Light-Emitting Diode (LED) is a semiconductor light source, which emits light when an electric current of 
voltage higher than a threshhold is applied to its leads. ACM R&D recently reported that they have 
succesfully developed a new LED, namely, ACMOLED. An ACMOLED has a special behavior that the 
intensity of light emitted from it changes in two steps as the voltage of the electric current increases, as 
depicted in the graph below. 
 

 
 
As shown, an ACMOLED is not activated in the voltage range from 0 to ଵܸ, while it emits light with intensity 
ଵܮ ൒ 0 when the voltage reaches the first threshold ଵܸ  and light with intensity ܮଶ ൒ ଵܮ  when the voltage 
reaches the second threshold ଶܸ. More specifically, if ܨ(𝑣𝑣) is the function that maps voltage 𝑣𝑣 to the intensity 
of light emitted from an ACMOLED, then for four real numbers ܮଵ,ܮଶ, ଵܸ, and ଶܸ  with 0 ≤ ଵܮ ≤ ଶܮ  and 
0 < ଵܸ < ଶܸ, we have 
 

(𝑣𝑣)ܨ =  ൝
0 if 0 ≤ 𝑣𝑣 < ଵܸ  
ଵܮ if ଵܸ ≤ 𝑣𝑣 < ଶܸ
ଶܮ if 𝑣𝑣 ൒ ଶܸ          

. 

 
The very issue now is that ACM R&D still does not know the exact values of two threshold voltage values ଵܸ 
and ଶܸ and the two intensity values ܮଵ and ܮଶ as well. Researchers in ACM R&D plan to estimate these four 
values for ACMOLEDs by repeated experiments. 
 
Experiments are performed by applying current of a specific voltage and observing the intensity of light 
emitted from an ACMOLED. After 𝑛𝑛 repeated experiments with different voltage values, obtained are the 
data of 𝑛𝑛  tuples (𝑣𝑣ଵ, ݈ଵ), (𝑣𝑣ଶ, ݈ଶ), … , (𝑣𝑣௡, ݈௡), where ݈௜  is the observed intensity for voltage 𝑣𝑣௜ . Due to the 
impreciseness of the observing device and other reasons, the experimental data are not accurate and may 
contain some error. Nonetheless, they want to find a best estimated intensity function ܨ(𝑣𝑣) that minimizes the 
following error function: 

error(ܨ) = max
ଵஸ௜ஸ௡

|݈௜ −  |(𝑣𝑣௜)ܨ
where |𝑥𝑥| denotes the absolute value of a real number 𝑥𝑥. 
 
For a given data of 𝑛𝑛 tuples, write a program that finds an estimated intensity function ܨ that minimizes the 
above error function and outputs the value of error(ܨ). 
 
 



 
ICPC 2018  Asia Regional – Seoul   Problem E: LED 

Input 
Your program is to read from standard input. The input starts with a line containing an integer 𝑛𝑛 (1 ≤ 𝑛𝑛 ≤
300,000), where 𝑛𝑛 is the number of tuples (𝑣𝑣௜, ݈௜) in the experimental data. In the following 𝑛𝑛 lines, each line 
contains two integers, which range inclusively from 0 to 10ଽ, representing 𝑣𝑣௜ and ݈௜ in each tuple (𝑣𝑣௜ , ݈௜) of 
the experimental data. Note that you may assume that there are no two tuples (𝑣𝑣௜ , ݈௜) and ൫𝑣𝑣௝, ௝݈൯ in the input 
such that 1 ≤ ݅ < ݆ ≤ 𝑛𝑛 and 𝑣𝑣௜ = 𝑣𝑣௝. 
 
 
Output 
Your program is to write to standard output. Print exactly one line consisting of one real number, rounded to 
the first decimal place, which represents the minimum value of error(ܨ). 
 
 
The following shows sample input and output for two test cases. 
 
 
Sample Input 1 Output for the Sample Input 1 
5 
0 0 
2 1 
3 5 
6 7 
7 11 

1.0 

 
Sample Input 2 Output for the Sample Input 2 
10 
5 9 
8 9 
0 0 
23 18 
26 18 
2 0 
3 0 
13 9 
18 9 
21 18 

0.0 

 
 

 



 
 
 
 
 
 
 
 
 

ICPC 2018 Asia Regional –Seoul   Problem F: Parentheses 

Problem F 
Parentheses 

Time Limit: 1 Second 
 
 

The correspondence among the operators and the operands 
can be clarified using parentheses. In a C program, for 
example, the expression a-b-c can be clarified as (a-b)-c 
since the minus operator is left associative. 
 
The parentheses can be used to override the default precedences and associativities of operators. For instance, 
in the expression a-(b-c), the left associativity of the minus operator is overridden by the parentheses. 
 
A novice C programmer Dennis has been stressed too much in remembering the operator precedences and 
associativities. Therefore, he made a new language namely ICPC (I can parenthesize C), in which the 
operator-operand correspondence should be clarified fully using parentheses; except for this, all the other 
features are same as C. For instance, one should write (a-b)-c instead of a-b-c and a+(b*c) rather than 
a+b*c. 
 
However, the usage of the parentheses can be too much in some cases. For the expression a-b-c, it is enough 
to write 
 
(a-b)-c 
 
but one can write it as 
 
(a-(b))-c 
 
or as 
 
((a-b)-c) 
 
where the pairs of parentheses underlined are superfluous. 
 
Dennis wants to convert the C expression into the ICPC expression, in which the pairs of parentheses should 
be used exactly as needed. You have to help Dennis. For simplicity, you can assume that the input C 
expression contains only five binary arithmetic operators (+, -, *, /, and %), left and right parentheses ( and ), 
and single-lowercase alphabet operands. Given such a C expression, write a program to determine whether it 
is an ICPC expression or not.  
 
If the expression is not an error in ICPC, then it should not be an error in C. Once it is not an error in C, the 
usage of parentheses should be checked to determine whether it is a proper expression in ICPC or not. If the 
expression is not properly parenthesized, i.e., the number of parentheses is not exact as needed, then it is 
considered improper. 
 
Beware that some of the input C expressions may be erroneous originally. For instance, a%/b is an error since 
it requires one more operand between % and / to be valid. As another example, a b + c is also an error 
since it requires one more operator between a and b. 
 



 
ICPC 2018  Asia Regional –Seoul   Problem F: Parentheses 

 
Input 
Your program is to read from standard input. The input consists of a single line containing a C expression. 
The expression is a string of single-lowercase alphabets, special symbols including left and right parentheses 
and five binary arithmetic operators (+, -, *, /, and %), and spaces. The input line contains at least one 
operand. The length of the input line (the number of characters in it) is no more than 1000 including the 
spaces and the single newline character at the end. 
 
 
Output 
Your program is to write to standard output. Print exactly one line. The line should contain one of the 
following words: error, proper, and improper. Print error if the input C expression is erroneous. Once 
it is not an error, print proper or improper depending on the parenthesized status of the expression: print 
proper if it is parenthesized properly with the exact number of parentheses needed for ICPC, and print 
improper otherwise. 
 
The following shows sample input and output for seven test cases. 
 
 
Sample Input 1 Output for the Sample Input 1 
a + a 
 

proper 

 
Sample Input 2 Output for the Sample Input 2 
(b+( a+c )) + b 
 

proper 

 
Sample Input 3 Output for the Sample Input 3 
c + ((b) + a) 
 

improper 

 
Sample Input 4 Output for the Sample Input 4 
c+(a%/b) 
 

error 

 
Sample Input 5 Output for the Sample Input 5 
x + ((y + z) 
 

error 

 
Sample Input 6 Output for the Sample Input 6 
a b + (c + b) 
 

error 

 
Sample Input 7 Output for the Sample Input 7 
x + y + z 
 

improper 

 
 



 
 

ICPC 2018 Asia Regional –Seoul   Problem G: Secret Code 

Problem G 
Secret Code 

Time Limit: 1 Second 
 
 

Three secret agents A, B and C want to confirm if their secret codes are identical. To keep this secret, they did 
not set the meeting time. Instead, they decided to appear randomly at a café during the time interval [0,ܵ] of a 
day. Let ݐ஺, ,஻ݐ ,஺ݐ ,஼ denote the arrival time of A, B, and C to the café, respectively. Soݐ ,஻ݐ ஼ݐ  are random 
numbers chosen uniformly from time interval [0,ܵ].  
 
The code confirmation proceeds as follows. The agent who arrives earlier waits for the next agents to appear 
for a predetermined waiting time. If two agents encounter in the café, both check if their codes are identical. 
Then the agent who arrived earlier leaves the café immediately after the code confirmation. The second agent 
then waits till the third agent appears at the café. The agent leaves the café if the agent encounters the last agent 
in the agent’s own waiting time. 
 
The waiting times of three agents A, B, C have already been determined as ݓ஺,ݓ஻,ݓ஼. It is crucial that each of 
the arrival times ݐ஺, ,஻ݐ ஼ݐ  is a real number between 0 and ܵ, not necessarily an integer, whereas each of the 
waiting times ݓ஺,ݓ஻,ݓ஼ is a positive integer satisfying 0 < ஺ݓ ,஻ݓ+ ஻ݓ  + ஼ݓ , ஺ݓ  + ஼ݓ < ܵ. We assume it 
takes no time in code confirmation task. The agent immediately leaves the café if the agent confirms the code 
with the agent arrived later. Let us explain this procedure using Figure G.1. 
 

 
        

 Figure G.1 Four cases for successful and unsuccessful confirmations. 
 
Successful code confirmation needs at least two encounters among three agents. When the arrival order is A, B, 
C, both of Case-1 and Case-4 are examples for successful confirmation, but Case-2 and Case-3 are not. In Case-
1, the agent A leaves the café at time 𝑥𝑥 = ஺ݐ ஻ immediately not waiting by timeݐ + ஺ܹ. It is easy to see that 
Case-2 is an unsuccessful case. In Case-2, though the waiting time of A overlaps those of B and C, B cannot 
confirm the code with C since the agent A (who already confirmed the code with B) leaves the café at time x. 
So, there is no way to confirm the code between B and C. Note that A also leaves the café at time x in Case-3 
and Case-4.  



 
ICPC 2018  Asia Regional –Seoul   Problem G: Secret Code 
 

We know the probability of the successful code confirmation depends on four integers (ܵ,ݓ஺,ݓ஻,ݓ஼). We are 
given 𝑛𝑛 different scenarios determined by four integers (ܵ,ݓ஺,ݓ஻,ݓ஼). We want to sort these 𝑛𝑛 scenarios in 
terms of this confirmation probability.  
 
Given n scenarios, write a program to print the scenario indices in the non-decreasing order of the probability. 
 
 
Input 
Your program is to read from standard input. The input starts with a line containing an integer 𝑛𝑛 (3 ≤ 𝑛𝑛 ≤ 20), 
where  𝑛𝑛  is the number of scenarios. In the following 𝑛𝑛  lines, each line contains four positive integers 
஼ݓ,஻ݓ,஺ݓ,ܵ  in this order, describing a scenario (ܵ,ݓ஺,ݓ஻,ݓ஼) where 0 < ஺ݓ + ஻ݓ,஻ݓ + ஼ݓ ஺ݓ, ஼ݓ+ <
ܵ ≤ 1,000.  
 
 
Output 
Your program is to write to standard output. Print the indices of 𝑛𝑛 scenarios in the non-decreasing order of the 
probability in one line. If scenarios ݅ and ݆ for 1 ≤ ݅ < ݆ ≤ 𝑛𝑛 have the same probability, then print ݅ before ݆.  
 
The following shows sample input and output for two test cases. 
 
 

Sample Input 1 Output for the Sample Input 1 
3 
100 12 13 14 
110  8  9 15 
200 23 30 40 

2 1 3 

 
Sample Input 2 Output for the Sample Input 2 
6 
201 15 16 16 
375 30 32 27 
900 75 73 67 
203 16 17 16 
373 31 32 27 
895 73 75 66 

1 2 3 6 5 4 

 



 
 
 
 
 
 
 
 
 

ICPC 2018 Asia Regional –Seoul   Problem H: Simple Polgyon 

Problem H 
Simple Polygon 
Time Limit: 2 Seconds 

 
 

Let ܵ be a set of 𝑛𝑛 line segments. An endpoint of every line segment of ܵ lies on the x-axis and the other lies 
above the x-axis in the plane. All endpoints are distinct, but the segments may intersect at their interiors. We 
want to draw a simple polygon ܲ such that every line segment of ܵ would be a part of the boundary of ܲ, i.e., 
either an edge or a part of an edge of ܲ. A polygon ܲ is said to be simple if the angle at each vertex of ܲ is not 
180°, and no two edges meet except for the case where two adjacent edges meet at a vertex. 
 
For example, Figure H.1 shows examples of line segments for which simple polygons can be drawn. In Figure, 
a black solid line segment represents a line segment in a given set ܵ. When combined with red dotted line 
segments, a simple polygon is constructed. The left one in this figure is a simple poygon such that all 
endpoints of ܵ  become vertices of ܲ . The right one shows a simple polygon only with 6 vertices; two 
endpoints are each contained in the interior of two edges of ܲ. Note here that an endpoint of a line segment of 
ܵ does not necessarily have to be a vertex of a simple polygon drawn for ܵ. 
 

 
Figure H.1: Examples of line segments for which simple polygons can be drawn. 

 
On the other hand, Figure H.2 shows examples of line segments for which any simple polygons cannot be 
drawn. 
 

 
Figure X.2: Examples of line segments for which any simple polygons cannot be drawn. 

  

There may be more than one simple polygon for a set of line segments. In that case, we want to find a simple 
polygon with the minimum boundary length. For example, the boundary length of the simple polygon shown 
in Figure H.3 is smaller than that of any other simple polygons for this set. 
 

 
Figure H.3: A simple polygon with the minimum boundary length.  



 
ICPC 2018  Asia Regional –Seoul   Problem H: Simple Polygon 

 
Given a set of line segments, write a program to determine whether there is a simple polygon for the set and if 
so, to find a simple polygon with the minimum boundary length. 
 
 
Input 
Your program is to read from standard input. The input starts with a line containing an integer, 𝑛𝑛 (3 ≤ 𝑛𝑛 ≤
20,000), where 𝑛𝑛 is the number of line segments. In the following 𝑛𝑛 lines, each line contains three integers 
𝑥𝑥ଵ,𝑥𝑥ଶ, and 𝑦𝑦ଶ (1 ≤ 𝑥𝑥ଵ,𝑥𝑥ଶ,𝑦𝑦ଶ ≤ 10଺)  which represent the coordinates of the endpoints of a line segment, 
(𝑥𝑥ଵ, 0) and (𝑥𝑥ଶ,𝑦𝑦ଶ). Note that all endpoints of line segments are distinct, i.e., any two endpoints don’t lie at 
the same position. 
 
 
Output 
Your program is to write to standard output. Print exactly one line. The line should contain a real number 
rounded to 1 decimal place which represents the boundary length of a simple polygon with the minimum 
boundary length if there is a simple polygon for a given set of line segments, otherwise, -1. 
 
 
The following shows sample input and output for three test cases. 
 
 
Sample Input 1 Output for the Sample Input 1 
4 
1 1 2 
2 2 1 
3 3 1 
4 4 2 

12.0 

 
 
Sample Input 2 Output for the Sample Input 2 
4 
1 1 2 
2 3 2 
5 4 1 
7 1 4 

19.3 

 
 
Sample Input 3 Output for the Sample Input 3 
4 
5 6 6 
4 3 2 
1 3 4 
9 7 3 

-1 

 
 



 
 
 
 
 
 
 
 
 

ICPC 2018 Asia Regional –Seoul   Problem I: Square Root 

Problem I 
Square Root 

Time Limit: 3 Seconds 
 
 

The square ܶଶ of a tree ܶ is defined as a simple undirected graph with the same vertex set as ܶ and the edge 
set that is augmented in such a way that two vertices of ܶଶ are adjacent if and only if there exists a path of 
length at most two in ܶ joining them. That is, its vertex set is equal to that of ܶ and its edge set is equal to 
{(𝑢𝑢, 𝑣𝑣) ׷  ்݀(𝑢𝑢, 𝑣𝑣) ≤ 2}, where ்݀(𝑢𝑢, 𝑣𝑣) denotes the distance between 𝑢𝑢 and 𝑣𝑣 in ܶ. Figure X.1 shows a tree 
and its square.  
 

             
 

  (a) a tree ܶ                                                                           (b) its square ܶଶ 
Figure I.1: A tree ܶ and its square ܶଶ. An edge of ܶଶ that joins vertices 𝑢𝑢 and 𝑣𝑣 with ்݀(𝑢𝑢, 𝑣𝑣) = 2 is shown by a dotted 
curve. 
 
If a graph ܩ is the square of some tree ܶ, i.e. ܩ =  ܶଶ, then ܶ is said to be a square root of ܩ. For a given tree 
ܶ, computing the square ܶଶ is trivial; for a given graph ܩ, however, deciding if there exists a tree ܶ such that 
ܶଶ =  is not trivial. Your job is to write an efficient running program for deciding whether or not there exists ܩ
a tree that is a square root of an input graph ܩ. 
 
 
Input 
Your program is to read from standard input. The first line contains two positive integers 𝑛𝑛  and ݉ , 
respectively, representing the numbers of vertices and edges of the input graph ܩ, where 2 ≤ 𝑛𝑛 ≤ 100,000 
and ݉ ≤ 1,000,000. It is followed by ݉ lines, each contains two positive integers 𝑢𝑢 and 𝑣𝑣 representing an 
edge between the vertices 𝑢𝑢 and 𝑣𝑣 of ܩ. It is assumed that ܩ is a simple undirected graph whose vertices are 
indexed from 1 to 𝑛𝑛. 
 
 
Output 
Your program is to write to standard output. The first line must contain an integer indicating whether there 
exists a tree that is a square root of the input graph. If yes, the integer must be 1; otherwise -1. When and 
only when the first line is 1, it must be followed by the description of an arbitrary tree that is a square root of 
the input graph. A tree is described by a single line containing an integer 𝑛𝑛, representing the number of 
vertices, followed by 𝑛𝑛 − 1 lines, each contains two positive integers 𝑢𝑢 and 𝑣𝑣 representing an edge between 
the vertices 𝑢𝑢 and 𝑣𝑣 of the tree.  
 
 
The following shows sample input and output for four test cases. 
 
 
 
 



 
ICPC 2018  Asia Regional –Seoul   Problem I: Square Root 

 
Sample Input 1 Output for the Sample Input 1 
8 15 
1 2 
1 3 
1 7 
2 3 
2 4 
2 6 
2 7 
2 8 
3 4 
3 7 
5 6 
5 7 
6 7 
6 8 
7 8 

1 
8 
1 2 
2 3 
3 4 
7 2 
5 6 
6 7 
7 8 
 

 
Sample Input 2 Output for the Sample Input 2 
8 14 
1 2 
1 3 
1 7 
2 3 
2 4 
2 6 
2 7 
2 8 
3 4 
3 7 
5 6 
5 7 
6 7 
6 8 

-1 
 

 
Sample Input 3 Output for the Sample Input 3 
5 7 
1 2 
2 3 
3 4 
4 5 
5 3 
4 2 
3 1 

1 
5 
1 2 
2 3 
3 4 
4 5 
 

 
Sample Input 4 Output for the Sample Input 4 
4 6 
1 2 
2 3 
3 4 
4 1 
4 2 
3 1 

1 
4 
2 1 
3 1 
4 1 
 

 



 
 

ICPC 2018 Asia Regional –Seoul   Problem J: Starwars 

Problem J 
Starwars 

Time Limit: 1 Second 
 
 

In the future, humans have colonized the universe and are at war with an alien race. In space, there are many 
solar systems and we can separate these solar systems into two categories: 1) human-controlled solar systems 
and 2) non-human-controlled solar systems. Humans have also installed their military bases in several solar 
systems, where some of these solar systems are human-controlled and the others are non-human-controlled. 
Solar systems are very far apart, so the only way to travel between two systems is by wormhole. However, not 
all pairs of solar systems are connected by a wormhole and wormholes only go in one direction. When a human 
ship, starting at a human-controlled solar system, wants to travel to a military base in some solar system, it has 
to receive a series of certificates to prove that it is a human ship instead of an alien spy ship. A ship travels 
between two solar systems via a wormhole and receives the corresponding certificate from the wormhole. There 
may be many different wormholes between two solar systems, each with different certificates. There can also 
be many wormholes from a solar system that lead to all different solar systems with the same certificate.  A 
solar system can even have wormholes that travel to itself for time travel. When a ship arrives at a military base, 
its collected certificates are examined in collected order to confirm whether or not the ship originated from a 
human-controlled solar system. However, humans are lazy and only check if the sequence of certificates 
matches a route from any human-controlled system to any military base.  
 
The aliens immediately realize that humans do not check if there is a route from a non-human-controlled solar 
system to a military base that has the same sequence of certificates due to their laziness. Alien spies want to 
sneak into human military bases. Therefore, they try to find a route to a military base that produces the same 
sequence of certificates that a ship travelling from a human-controlled system to a military base would have. 
However, aliens cannot start from human-controlled solar systems but they can visit human-controlled solar 
systems after their initial departure. 
 
As an alien spy, your job is to determine if there is a route from a non-human-controlled system to a military 
base ܤ௜ such that the route produces a sequence of certificates that would allow you to pass as a human; in other 
words, this sequence of certificates is same as a sequence of certificates that a human can collect when travelling 
from a human-controlled system to a military base ܤ௝. Note that ܤ௜ and ܤ௝ can be different.  
 
The universe is made up of ܰ solar systems. Some of them are specially marked as human-controlled and some 
are specially marked as having a military base (solar systems can be both human controlled and have a military 
base, one or the other, or neither). Some of the solar systems are connected by one-way wormholes. When a 
ship travels through a wormhole, it receives a special certificate (there are many different types of certificates). 
 
 
Input 
Your program is to read from standard input. The first line of the input contains five integers ܰ,ܹ,ܯ,ܪ,ܥ 
separated by spaces. ܰ (1 ≤ ܰ ≤ 1,000) is the number of solar systems. The solar systems are labeled with 
distinct integers from 0 to ܰ − 1. ܹ (1 ≤ ܹ ≤ 8000) is the number of wormholes. 1) ܥ ≤ ܥ ≤ 20) is the 
number of distinct certificates. The next line contains 1) ܪ ≤ ܪ ≤ ܰ) integers, separated by spaces, which 
correspond to the human controlled solar systems. The next line contains 1) ܯ ≤ ܯ ≤ ܰ) integers, separated 
by spaces, which mark the solar systems with military bases. The remaining ܹ lines contain three integers per 
line ݏ, ܿ,  is the source solar system ݏ ,separated by spaces, corresponding to a wormhole. For each wormhole ݐ
for the wormhole, ܿ is the certificate the wormhole awards, and ݐ is the target solar system of the wormhole 
with 0 ≤ ,ݏ ݐ ≤ ܰ − 1 and 1 ≤ ܿ ≤ ݏ Note that wormholes can have .ܥ =   .ݐ



 
ICPC 2018  Asia Regional –Seoul   Problem J: Starwars 

Output 
Your program is to write to standard output. Print YES if there is a way for an alien to sneak into a military base 
and NO if there is no way for an alien to sneak into a military base. 
 
 
The following shows sample input and output for three test cases. 
 

Sample Input 1 Output for the Sample Input 1 
4 6 2 1 2 
0 
1 3 
0 1 0 
0 2 1 
0 1 2 
1 2 0 
2 2 1 
2 1 3 

YES 

 
Sample Input 2 Output for the Sample Input 2 
5 6 2 1 1 
0 
4 
0 1 1 
1 1 2 
2 2 3 
2 2 1 
3 1 4 
4 1 4 

NO 

 
Sample Input 3 Output for the Sample Input 3 
5 4 2 2 2 
1 3 
2 4 
0 2 1 
1 1 2 
3 2 3 
3 1 4 

YES 

 



 
 
 
 
 
 
 
 
 

ICPC 2018 Asia Regional –Seoul  Problem K: TV Show Game 

Problem K 
TV Show Game 

Time Limit: 1 Second 
 

 
Mr. Dajuda, who is famous for a TV show program, occasionally suggests an interesting game for the 
audience and gives them some gifts as a prize. The game he suggested this week can be explained as follows. 
 
The ݇(> 3) lamps on the stage are all turned off at the beginning of the game. For convenience, lamps are 
numbered from 1 to ݇. Each lamp has a color, either red or blue. However, the color of a lamp cannot be 
identified until it is turned on. Game participants are asked to select three lamps at random and to guess the 
colors of them. Then each participant submits a paper on which the predicted colors of selected lamps are 
recorded to Mr. Dajuda, the game host. When all the lamps are turned on, each participant checks how many  
predicted colors match the actual colors of the lamps. If two or more colors match, he/she will receive a nice 
gift as a prize. 
 
Mr. Dajuda prepared a special gift today. That is, after reviewing all the papers received from the game 
participants he tries to adjust the color of each lamp so that every participant can receive a prize if possible.  
 
Given information about the predicted colors as explained above, write a program that determines whether the 
colors of all the lamps can be adjusted so that all the participants can receive prizes. 
 

 
Input 
Your program is to read from standard input. The input starts with a line containing two integers, ݇ and 𝑛𝑛 
(3 < ݇ ≤ 5,000, 1≤ 𝑛𝑛 ≤ 10,000), where ݇ is the number of lamps and 𝑛𝑛 the number of game participants. 
Each of the following 𝑛𝑛 lines contains three pairs of (݈, ܿ), where ݈ is the lamp number he/she selected and ܿ is 
a character, either B  for blue or R for red, which denotes the color he/she guessed for the lamp. There is a 
blank between ݈ and ܿ and each pair of (݈, ܿ) is separated by a blank as well as shown in following samples. 
 
 
Output 
Your program is to write to standard output. If it is possible that all the colors can be adjusted so that every 
participant can receive a prize, print ݇ characters in a line. The ݅௧௛ character, either B for blue or R for red 
represents the color of the ݅௧௛ lamp. If impossible, print -1. If there are more than one answer, you can print 
out any of them. 
 
 
The following shows sample input and output for two test cases. 
 
 
Sample Input 1 Output for the Sample Input 1 
7 5 
3 R 5 R 6 B 
1 B 2 B 3 R 
4 R 5 B 6 B 
5 R 6 B 7 B 
1 R 2 R 4 R 

BRRRBBB 



 
ICPC 2018  Asia Regional –Seoul  Problem K: TV Show Game 

 
Sample Input 2 Output for the Sample Input 2 
5 6 
1 B 3 R 4 B 
2 B 3 R 4 R 
1 B 2 R 3 R 
3 R 4 B 5 B 
3 B 4 B 5 B 
1 R 2 R 4 R 

-1 

 
 



 
 
 
 
 
 
 
 
 

ICPC 2018 Asia Regional –Seoul  Problem L: Working Plan 

Problem L 
Working Plan 

Time Limit: 2 Seconds 
 
 

ICPC manager plans a new project which is to be carried out for 𝑛𝑛 days. In this project, ݉ persons numbered 
from 1 to ݉ are supposed to work. Each day ݆ (1 ≤ ݆ ≤ 𝑛𝑛) requires ௝݀ persons, and each person ݅ (1 ≤ ݅ ≤ ݉) 
wants to work ݓ௜ days. 
 
To increase the efficiency in performing the project, the following two conditions should be satisfied:  

(1) each person works for only consecutive ݓ days when he/she works, and  
(2) each person can work again after he/she has a rest for at least ݄ days. 

 
ICPC manager wants to find a working plan to assign the working days for all persons such that the number of 
working days of each person ݅ (1 ≤ ݅ ≤ ݉) is equal to ݓ௜ and the number of persons who work for each day ݆ 
(1 ≤ ݆ ≤ 𝑛𝑛) is equal to ௝݀, and above two conditions are also satisfied. 
 
For example, assume the project is carried out for 𝑛𝑛 = 9 days, and ݉ = 4 persons participate in the project. 
Let ݓ = 2  and ݄ = 1.  Also, assume (4ݓ,3ݓ,2ݓ,1ݓ) = (4, 4, 6, 2)  and (݀1,݀2,݀3,݀4,݀5,݀6,݀7,݀8,݀9)  =
(1, 3, 2, 1, 2, 1, 1, 3, 2). The table below shows a feasible solution where the ݅-th row corresponds to person ݅, 
and the ݆-th column corresponds to day ݆. If person ݅ works or has a rest in day ݆, the value of the table 
element with row ݅ and column ݆ is 1 or 0, respectively. 
 

                Day 
  1 2 3 4 5 6 7 8 9 
 1 1 1 0 0 0 0 0 1 1 

Person 2 0 1 1 0 0 0 1 1 0 
 3 0 1 1 0 1 1 0 1 1 
 4 0 0 0 1 1 0 0 0 0 

 
Given ݉,𝑛𝑛,ݓ ,݄,ݓ௜  (1 ≤ ݅ ≤ ݉) which is a multiple of ݓ, and ௝݀  (1 ≤ ݆ ≤ 𝑛𝑛), write a program to find a feasible 
solution as a working plan. 
 
 
Input 
Your program is to read from standard input. The input starts with a line containing four integers, ݉, 𝑛𝑛, ݓ, ݄ 
(1 ≤ ݉ ≤ 2,000 , 1 ≤ 𝑛𝑛 ≤ 2,000 , 1 ≤ ݄,ݓ ≤ 𝑛𝑛 ). The following line contains ݉  integers where the ݅ -th 
(1 ≤ ݅ ≤ ݉) integer represents ݓ௜  (1 ≤ ௜ݓ ≤ 𝑛𝑛) which is a multiple of ݓ. The next line contains 𝑛𝑛 integers 
where the ݆-th (1 ≤ ݆ ≤ 𝑛𝑛) integer represents ௝݀  (0 ≤ ௝݀ ≤ ݉). 
 
 
Output 
Your program is to write to standard output. If there is a feasible working plan, print 1 in the first line 
followed by ݉  lines, each ݅ -th (1 ≤ ݅ ≤ ݉)  line should contain ݓ௜/ݓ  integers. These integers form an 
increasing sequence of first days that person ݅ works in the feasible plan. If there is no feasible working plan, 
print only -1 in the first line. The first sample below corresponds to the example given in the table above. 
 
 



 
ICPC 2018  Asia Regional –Seoul  Problem L: Working Plan 

 
The following shows sample input and output for two test cases. 
 
 
Sample Input 1 Output for the Sample Input 1 
4 9 2 1 
4 4 6 2 
1 3 2 1 2 1 1 3 2 

1 
1 8 
2 7 
2 5 8 
4 

 
Sample Input 2 Output for the Sample Input 2 
4 7 2 2 
4 4 4 2 
1 3 2 1 3 3 1 

-1 

 
 


	Seoul_cover_page
	A_Circuits_final
	Input
	Output

	B_CosmeticSurvey_final
	Input
	Output

	C_DisksArrangement_final
	Input
	Output

	D_GoLatin_final
	Input
	Output

	E_LED_final
	Input
	Output

	F_Parentheses_final
	Input
	Output

	G_SecretCode_final
	Input
	Output

	H_SimplePolygon_final
	Input
	Output

	I_SquareRoot_final
	Input
	Output

	J_Starwars_final
	Input
	Output

	K_TVShowGame_final
	Input
	Output

	L_WorkingPlan_final
	Input
	Output


