
The 37th Annual

ACM International Collegiate

Programming Contest

ASIA Regional - Daejeon

Problem Set

Please check that you have 12 problems and 21 sheets (excluding additional materials).

A. Accelerator (2 pages)

B. Contour Maps (2 pages)

C. Critical 3-Path (2 pages)

D. Dot Number (1 page)

E. Palindrome (1 page)

F. Pandora (2 pages)

G. Pattern Lock (2 pages)

H. Pole Arrangement (1 page)

I. Rock Paper Scissors (2 pages)

J. Slicing Tree (3 pages)

K. Sports Repoters (1 pages)

L. Square Annulus (2 pages)

ICPC 2012 Asia Regional – Daejeon Problem A: Accelerator

The 37
th

 Annual

ACM International Collegiate

Programming Contest

Asia Regional - Daejeon

Problem A
Accelerator

A huge particle accelerator will be constructed in Daedeok Innopolis. The

accelerator may be considered as a huge electric circuit, containing a lot of

bridges. The bridges must be connected by wires. Particularly, there are red and

blue bridges, and each red bridge must be connected by a wire to one of the

blue bridges. The goal is to minimize the total length of wires connecting red

bridges with blue ones.

More precisely, we have a circle representing the accelerator, and there are red and blue points on the circle

representing the red bridges and the blue bridges. The number of red points is less than or equal to the number

of blue points and all red and blue points are distinct. Each red point must be connected to a blue point with a

wire. Two or more red points cannot be connected to the same blue point. The length of wire is the arc length

between the connected points. So the goal is to minimize the sum of the arc lengths between matched points.

For convenience, we use a circle of perimeter , and consider only locations on the circle such that the arc

length between two adjacent locations is 1. The locations are numbered by 0, 1, …, clockwise. Each red

or blue point is at one of these locations, that is, the location of a red or blue point is represented as one of the

integer numbers 0, 1, …, . The length between arbitrary pair of red and blue points is always an integer.

For example, Figure 1 shows 3 red points and 3 blue points lying on a circle with 12 locations. In an optimal

matching of this example, the red points at location 1, 3, and 9 are matched with the blue points at location 5,

4, and 10, respectively. So the minimum sum of arc lengths between the matched points is 6.

Figure 1.

Given red and blue points on a circle sorted clockwise, write a program to match the red points and the blue

ones minimizing the sum of the arc lengths between matched points.

Input
Your program is to read from standard input. The input consists of T test cases. The number of test cases T is

given in the first line of the input. Each test case starts with a line containing three integers, , and

(, ,), where is the number of locations considered

on the circle, is the number of red points and is the number of blue points. In the second line of each test

ICPC 2012 Asia Regional – Daejeon Problem A: Accelerator

case, sorted integers are given, representing the locations of red points. In the third line of each

test case, sorted integers are given, representing the locations of blue points. Then

 , and , and all ’s and ’s are distinct. There is a single space

between two integers in same line.

Output
Your program is to write to standard output. Print exactly one line for each test case. The line should contain

the minimum of the sum of arc lengths between the matched red and blue points.

The following shows sample input and output for two test cases.

Sample Input Output for the Sample Input
2

12 3 3

1 3 9

4 5 10

12 3 4

1 4 7

3 6 8 11

6

4

ICPC 2012 Asia Regional – Daejeon Problem B: Contour Maps

The 37
th

 Annual

ACM International Collegiate

Programming Contest

Asia Regional - Daejeon

Problem B
Contour Maps

Hallyeohaesang national park is located in the south of the Korean Peninsula. Hallyeohaesang is a unique

marine ecosystem which extends along 120km. The park is studded with more than 360 islands, large and

small. Specially, Hallyeosudo which is known as the most beautiful waterway ever has 69 uninhabited islands

and 30 inhabited islands spread out across the sea like jewels.

Mr. Kim, a park superintendent, plans to conduct a survey about the elevations of all islands of the park. He

has contour maps of the islands. A contour map shows elevations above sea level and surface features of the

land by means of contour lines. A contour line is a closed curve which joins points of equal elevation above a

given level (see Figure 1).

The contour lines of the islands in the park, do not intersect each other, and are simple convex closed curves

like ellipses. In order to use a computer, he first converted the original contour maps to corresponding digital

contour maps. In a digital contour map, a contour line is represented as the boundary of a rectilinear convex

polygon (see Figure. 2). A rectilinear polygon is a polygon whose edges are either horizontal or vertical. A

rectilinear polygon is called convex if the intersection of the interior of and a vertical or horizontal line is

either empty or a line segment. A level is a predefined measure for elevation. The outermost contour line is at

level . If the closest contour line surrounding a contour line is at level , then is at level . In Figure

2, the level of the highest contour line that we can see in the map is .

 Figure1. Contour lines Figure 2. A contour map

Given a contour map with n contour lines that are represented as the boundaries of rectilinear convex

polygons, write a program that computes the level of the highest contour line in the map.

Input
Your program is to read from standard input. The input consists of test cases. The number of test cases is

given in the first line of the input. Each test case starts with a line containing an integer ,
where is the number of rectilinear convex polygons representing contour lines. In the next lines of each

test case, each line contains integers and ,

http://www.google.co.kr/imgres?hl=ko&newwindow=1&safe=off&biw=1104&bih=612&tbm=isch&tbnid=c5g6VgL-XcMX8M:&imgrefurl=http://en.wikipedia.org/wiki/Contour_line&imgurl=http://upload.wikimedia.org/wikipedia/commons/thumb/d/d1/Courbe_niveau.svg/220px-Courbe_niveau.svg.png&w=220&h=251&ei=b5FFUO_4IK7piwLTmoG4Bg&zoom=1&iact=hc&vpx=275&vpy=144&dur=904&hovh=200&hovw=176&tx=100&ty=109&sig=104553015124697969326&page=1&tbnh=118&tbnw=103&start=0&ndsp=16&ved=1t:429,r:1,s:0,i:70

ICPC 2012 Asia Regional – Daejeon Problem B: Contour Maps

where is the number of vertices of a rectilinear convex polygon Q and ’s are coordinates of vertices

of Q, which are in counterclockwise order. Notice that the boundaries of any two rectilinear convex polygons

do not intersect each others.

Output
Your program is to write to standard output. Print exactly one line for each test case. The line should contain

an integer, the level of the highest contour line in the map.

The following shows sample input and output for two test cases (see Figure 3).

Sample Input Output for the Sample Input
2

5

4 5 3 14 3 14 12 5 12

4 6 4 13 4 13 11 6 11

4 7 5 12 5 12 10 7 10

4 8 6 11 6 11 9 8 9

4 9 7 10 7 10 8 9 8

4

4 10 7 11 7 11 8 10 8

6 3 7 5 7 5 9 6 9 6 12 3 12

6 8 5 9 5 9 6 12 6 12 9 8 9

10 9 2 9 3 14 3 14 11 7 11 7 8 6 8 6 4 4 4 4 2

5

3

Figure 3. Illustrations for Sample Input.

ICPC 2012 Asia Regional – Daejeon Problem C: Critical 3-Path

The 37
th

 Annual

ACM International Collegiate

Programming Contest

Asia Regional - Daejeon

Problem C
Critical 3-Path

The PERT (Project Evaluation and Review Technique) chart, a graphical tool used in the field of project

management, is designed to analyze and represent the set of tasks involved in completing a given project.

Edges in PERT chart represent tasks to be performed, and edge weights represent the length of time required

to perform the task. For vertices u, v, w of a PERT chart, if edge (u,v) enters vertex v and edge (v,w) leaves v,

then task (u,v) must be performed prior to task (v,w). A path through a PERT chart represents a sequence of

tasks that must be performed in a particular order. Note that there is no cycle in the PERT chart. A critical

path is a longest path in PERT chart, corresponding to the longest time to perform an ordered sequence of

tasks. The weight of a critical path is a lower bound on the total time to perform all the tasks in a project.

A 3-path of six distinct vertices s1, s2, s3, t1, t2, t3 in a PERT chart is defined as follows:

(1) A 3-path consists of three paths Pi from vertex si to vertex ti for i =1, 2, 3.

(2) The paths P1, P2, P3 are vertex-disjoint, i.e., no two of the paths have vertices in common.

The length of a 3-path is the sum of the length of the 3 paths P1, P2, P3. A critical 3-path of six distinct

vertices in a PERT chart is a 3-path of maximum length over all 3-paths.

For example, a critical 3-path {P1, P2, P3} of a graph in Figure 1, where P1 is a path from vertex 3 to vertex 15,

P2 is a path from vertex 4 to vertex 16, and P3 is path from vertex 5 to vertex 17, is as follows:

P1 : 3 → 6 → 11 → 15

P2 : 4 → 7 → 9 → 12 → 16

P3 : 5 → 8 →13 →17

The length of the critical 3-path is 128.

Figure 1. A sample PERT chart

Given a graph corresponding to a PERT chart and six distinct vertices, write a program to find the length of

critical 3-path of the graph corresponding to the six vertices.

3

4

5

6

7

8

11

1

2

9

10

12

13

14

15

16

17

2

4

2

3

3

10

3

2

4

2

6

10

7

4

3

1

3

2

4

4

100

15

3

1

18

5

4

9

s1

s2

s3

t1

t2

t3

ICPC 2012 Asia Regional – Daejeon Problem C: Critical 3-Path

Input
Your program is to read from standard input. The input consists of T test cases. The number of test cases T is

given in the first line of the input. Each test case starts with a line containing two integers, n and m (6  n 

100, n-1  m  n(n-1)/2), where n is the number of vertices and m is the number of edges. Every input node

is numbered from 1 to n. Next line contains six integers s1, s2, s3, t1, t2, t3, where all six integers are distinct. In

the following m lines, the weight of the directed edges are given; each line contains three integers, u, v, and W

(1  W  100,000), where W is the weight of an edge from vertex u to v. You may assume that u < v.

Output
Your program is to write to standard output. Print exactly one line for each test case. The line should contain

the length of critical 3-path {P1, P2, P3}, where Pi is a path from si to ti (1  i  3). If there does not exist a

critical 3-path, print 0.

The following shows sample input and output for two test cases.

Sample Input Output for the Sample Input
2

18 27

3 4 5 15 16 17

1 3 2

1 4 4

2 4 2

2 5 3

3 6 3

3 9 10

4 7 3

4 10 2

5 8 4

6 11 4

6 9 9

7 9 4

7 10 7

8 13 6

8 14 2

9 11 3

9 12 1

9 13 3

10 13 10

11 15 1

12 15 3

12 16 2

13 16 15

13 17 100

14 17 4

15 18 5

16 18 4

6 5

1 2 3 4 5 6

1 2 1

2 3 1

3 4 1

4 5 1

5 6 1

128

0

ICPC 2012 Asia Regional – Daejeon Problem D: Dot Number

The 37
th

 Annual

ACM International Collegiate

Programming Contest

Asia Regional - Daejeon

Problem D
Dot Number

You are given an infinite number of dots in the first quadrant of two-dimensional Cartesian plane. The and

coordinates of each dot are positive integers. You are going to count the dots by assigning a natural number to

every dot in the diagonal order as in the figure.

The unique number assigned to each dot is called the dot number.

The dot number of is denoted as . For example, the

figure shows the dot numbers for some dots, ,
 , , and , etc.

The addition of dots is defined by those of corresponding coordinates,

i.e. . Since the dot number

determines the actual coordinates of the dot, the addition of two dots

can also be denoted by that of two dot numbers. For example, the

addition of the dots and can be denoted by since

 , , and the addition result is 13 since

 .

You are to write a program which adds two dots represented by their dot numbers. Your program should

decipher the dot numbers, add the dots, and print the dot number of the resulting dot.

Input
Your program is to read from standard input. The input consists of test cases. The number of test cases is

given in the first line of the input. Each test case consists in one line containing two dot numbers separated by

a space. The dot numbers are greater than 0 and less than 10,000.

Output
Your program is to write to standard output. Print exactly one line for each test case. The line should contain

an integer, the dot number of the result of the dot addition. Beware that the resulting dot number may greater

than or equal to 10,000.

The following shows sample input and output for two test cases.

Sample Input Output for the Sample Input
2

1 5

3 9

13

26

1

2

4

7 12

8

3

5

18

13

6

9

25

19

10

14

x

y

1 2 3 4

1

2

3

4

ICPC 2012 Asia Regional – Daejeon Problem E: Palindrome

The 37
th

 Annual

ACM International Collegiate

Programming Contest

Asia Regional - Daejeon

Problem E
Palindrome

A palindrome is a word which can be read the same way in either direction. For example, the following words

are palindromes: civic, radar, rotor, and madam.

You have found a note that contains words. Later you found out that the note contains a clue to the

password for accessing the most secret server where ICPC problems are stored. Unfortunately, the password is

not written as it is. It is the concatenation of two different strings out of the words, and it is a palindrome.

For example, you can find the palindrome abababa from the five words aaba, ba, ababa, bbaa, and

baaba by concatenating ababa and ba.

Write a program to find the password from given words.

Input
Your program is to read from standard input. The input consists of T test cases. The number of test cases T is

given in the first line of the input. Each test case starts with a line containing one integer ,
where is the number of words in the note. In the next k lines of each test case, each line contains a word in

ASCII characters between a and z. The sum of lengths of strings for each case is equal to or smaller than

10,000.

Output
Your program is to write to standard output. For each test case, if there is no palindrome obtained by

concatenating two strings, print a single line containing 0. Otherwise, print the palindrome. If there are two or

more palindromes, just print one of them.

The following shows sample input and output for two test cases.

Sample Input Output for the Sample Input
2

5

aaba

ba

ababa

bbaa

baaba

3

abc

bcd

cde

abababa

0

ICPC 2012 Asia Regional – Daejeon Problem F: Pandora

The 37
th

 Annual

ACM International Collegiate

Programming Contest

Asia Regional - Daejeon

Problem F
Pandora

An unmanned robot, named Pandora, launched by KARA (Korea Astronomy Research Association) arrived at

Mars. Pandora found an unidentified architecture whose boundary is a simple rectilinear polygon.

A rectilinear polygon is a polygon whose edges are either horizontal or vertical. That is, at each vertex of the

polygon, the interior angle formed by its two incident edges is either 90° or 270°, as shown in Figure 1. We

say that a rectilinear polygon is simple if (1) each vertex is incident to exactly two edges and (2) there are no

edges that intersect each other except at their end vertices.

Figure 1. (a) A simple rectilinear polygon. (b)-(c) Non-simple rectilinear polygons because (b)

there is a vertex having four incident edges, or (c) there is a pair of edges crossing each other.

To figure out the complete shape of the boundary of the simple rectilinear polygon, Pandora moved along the

boundary in counterclockwise direction until it came back to the starting position. Also it sent to KARA

geometric values on the boundary such as the length of the edges and turning angles (90° or 270°) at the

vertices. But, due to the instability of the wireless communication between Pandora in Mars and KARA in

Earth, only the angle information arrived at KARA. Thus KARA must guess the geometric shape of the

boundary of the simple rectilinear polygon from the angle information only.

More formally, the angle information is represented as an angle sequence of L and R. The letter L means a

left turn (with respect to the moving direction) at a vertex, i.e., the corresponding vertex has an angle 90° and

the letter R means a right turn at a vertex of angle 270°. For example, the angle sequence LLLL represents an

axis-parallel rectangle. Figure 2 shows another example.

Let be the number of L’s in , and let be the number of R’s in . Since is obtained by moving along the

boundary of the simple rectilinear polygon in counterclockwise direction, it is true that , where

and . Conversely, if we have a sequence with , then we can always draw one or more simple

rectilinear polygons having vertices from whose angle sequences in counterclockwise direction are

ICPC 2012 Asia Regional – Daejeon Problem F: Pandora

exactly . The final task of KARA is to know the monotonicity of the simple rectilinear polygons drawn from

 .

Figure 2. (a) A simple rectilinear polygon and its angle sequence . (b)-(d) Examples:

(b) Monotone to two axes. (c) Monotone to one axis. (d) Not monotone to any axis.

A simple rectilinear polygon is monotone with respect to X-axis (resp., Y-axis) if any line orthogonal to X-

axis (resp., Y-axis) intersects the polygon in (at most) one connected segment. As illustrated in Figure 2,

simple rectilinear polygons as in Figure 2(b)-(c) are monotone to one or two axes, but some polygon as in

Figure 2(d) is not monotone to any axis. KARA already proved that all the simple rectilinear polygons drawn

from have the same monotonicity property. You should output how many axes the simple rectilinear

polygons drawn from are monotone to. The output will be one of 0, 1, or 2, so you should output 0 if they

are not monotone to any axis, 1 if they are monotone to exactly one axis, and 2 if they are monotone to two

axes.

Input
Your program is to read from standard input. The input consists of T test cases. The number of test cases T is

given in the first line of the input. Each test case contains a string consisting of L and R such that the number

of L’s is four more than the number of R’s in , and the length of is inclusively between and 100,000.

Output
Your program is to write to standard output. For each test case, print a line containing the number of axes, one

of 0, 1, or 2, to which the simple rectilinear polygons drawn from are monotone.

The following shows sample input and output for three test cases.

Sample Input Output for the Sample Input
3

LRLLLRLL

LLLLLLRR

LRRLLLRLLLRRLL

2

1

0

ICPC 2012 Asia Regional – Daejeon Problem G: Pattern Lock

The 37
th

 Annual

ACM International Collegiate

Programming Contest

Asia Regional - Daejeon

Problem G
Pattern Lock

Pattern lock security is generally used in Android handsets instead of a password. The pattern lock can be set

by joining points on a 3×3 matrix in a chosen order. The points of the matrix are registered in a numbered

order starting with 1 in the upper left corner and ending with 9 in the bottom right corner. This pattern must

involve at least 4 points to set, cannot be disconnected and each point number can be used at most once. So

the pattern of the lock screen in Figure 1(b) would be 2-1-5-3-6-8-4-7-9.

(a) (b)

Figure 1. (a) Android pattern lock screen with overlaid identification numbers on contact points.

(b) A valid pattern lock.

In Figure 1(b), since the point 8 is already visited, you can connect from point 7 to point 9 directly. If the point

8 is not visited yet, you cannot connect from point 7 to point 9 directly.

Though Chulsoo has completely forgotten his pattern, he can get his pattern image as a geometric graph from

his smudged smartphone screen such as Figure 2.

(a) (b)

Figure 2. (a) A pattern image. (b) A geometric graph of the pattern image.

For example, let’s consider four geometric graphs in Figure 3. Since the graph in Figure 3(a) is disconnected,

this pattern is not possible to construct. Even though the graph in Figure 3(b) is connected, this pattern cannot

be constructed. That is, there is no sequence joining points that makes the given pattern. The pattern given in

Figure 3(c) can be constructed by the point-joining sequence 1-8-9-7-4-3 only. The pattern given in Figure 3(d)

can be constructed by 4-5-6-3-2-8-9-7-1 or 8-5-2-3-6-4-1-7-9.

(a) (b) (c) (d)

Figure 3. The geometric graphs obtained from smudged smartphone screen.

ICPC 2012 Asia Regional – Daejeon Problem G: Pattern Lock

You are going to find Chulsoo’s pattern lock from his pattern image. Given a pattern image as a geometric

graph, write a program to find a possible pattern lock sequence.

Input
Your program is to read from standard input. The input consists of test cases. The number of test cases is

given in the first line of the input. Each test case starts with a line containing an integer , where

 is the number of edges of the geometric graph. In the next lines of each test case, the -th line contains two

integers , which represent an edge between .

Output
Your program is to write to standard output. For each test case, if it can be possible to recover a pattern code,

print a point joining sequence which makes a pattern. Otherwise, print “IMPOSSIBLE”.

The following shows sample input and output for six test cases.

Sample Input Output for the Sample Input
6

3

5 8

7 8

8 9

3

5 8

7 8

8 9

6

4 5

5 6

4 7

5 8

7 8

8 9

6

1 2

2 3

2 5

4 5

5 6

3 6

5

1 2

2 3

2 5

4 5

5 6

5

1 4

4 7

8 9

6 9

6 5

5 8 9 7

5 8 7 9

5 8 9 7 4 6

2 5 4 6 3 1

IMPOSSIBLE

IMPOSSIBLE

ICPC 2012 Asia Regional – Daejeon Problem H: Pole Arrangement

The 37
th

 Annual

ACM International Collegiate

Programming Contest

Asia Regional - Daejeon

Problem H
Pole Arrangement

There are poles of height 1, 2, ... , in a row. If you look at these poles from the left side or the right side,

smaller poles are hidden by taller poles. For example, consider the two arrangements of 4 poles in the next

figure:

For each arrangement, only one pole can be seen from the left, and two poles can be seen from the right.

You are to write a program to calculate the number of arrangements of poles such that seen from the left

you see poles and seen from the right you see poles.

Input
Your program is to read from standard input. The input consists of test cases. The number of test cases is

given in the first line of the input. Each test case consists of a line containing three integers, , , and

(), where is the number of poles and (resp.) is the number of poles that can be seen

from the left(resp. right).

Output
Your program is to write to standard output. Print exactly one line for each test case. The line should contain

the number of arrangements of poles for the test case.

The following shows sample input and output for four test cases.

Sample Input Output for the Sample Input
4

4 1 2

4 1 1

5 2 4

20 2 1

2

0

4

6402373705728000

ICPC 2012 Asia Regional – Daejeon Problem I: Rock Paper Scissors

The 37
th

 Annual

ACM International Collegiate

Programming Contest

Asia Regional - Daejeon

Problem I
 Rock Paper Scissors

We have robots who can play the “Rock Paper Scissors (RPS)” game. This game consists of k successive

rounds. Each robot keeps a predefined sequence of k hands in a string of length k. In the game the disqualified

robots will be eliminated and the game will go on with the remaining robots. The game is over if only one

winner remains. If there are more than one robots survived after k rounds, the game should be declared a

“draw”.

Let R, P and S denote Rock, Paper and Scissor, respectively. If the hand string is “RSPSRSSP”, then the robot

will show “Rock” in the first round and “Scissors” in the next round. And in the final 8
th
 round the robot will

show “Paper” only if he is not disqualified during the game. In the game if only one winner remains after the

i-th round competition, then the robot RPS game terminates in the i-th round and you should report the winner

robot. The game may not terminate depending on the RPS sequences after k rounds have passed. Then you

should report 0(zero) to declare a “draw” ending.

Input
Your program is to read from standard input. The input consists of T test cases. The number of test cases T is

given in the first line of the input. Each test case starts with the integer N to denote the number of robots

participating. Then the predefined RPS strings of length k are given in the following N lines one by one. Note

that 2 ≤ N ≤ 10 and k, the length of the RPS sequence string, is restricted to 3 ≤ k ≤ 30. For each test case,

the robots are numbered 1 to N sequentially from top.

Output
Your program is to write to standard output. Print exactly one integer to denote the robot number of the one

winner, if it exists. If there is no winner after the k rounds competition, then you should print zero(0) to

denote the “draw” ending.

The following shows sample input and output for three test cases.

ICPC 2012 Asia Regional – Daejeon Problem I: Rock Paper Scissors

Sample Input Output for the Sample Input
3

5

RPSSSPR

SSRPRPS

PRSSRSP

RRRPSPP

SSSSSRP

4

RPSPSPSPRPRPSR

SPSSRRRSSRPRRR

RSPRPPPPSSRPSR

PRRSSSRRPRSRRR

3

SPPPSS

SPRRRR

SSSSPP

2

0

3

ICPC 2012 Asia Regional – Daejeon Problem J: Slicing Tree

The 37
th

 Annual

ACM International Collegiate

Programming Contest

Asia Regional - Daejeon

Problem J
Slicing Tree

VLSI circuits are too complex to design without CAD tools since the complexity of many VLSI circuits is in

the order of millions of transistors today. In order to reduce the complexity of the design process for a VLSI

circuit, the whole process is broken into several intermediate phases. Among them is a physical design phase.

In the physical design phase, the basic components of the circuit are usually thought of as rectangular modules.

The physical design phase itself consists of several steps. One of the steps, which is most crucial for the

performance of the circuit, is a floorplan/placement step. Actual floorplan/placement problem in the VLSI

circuit design is very complex. However, here, you are asked to deal with a simple version of the problem, in

which each component of a VLSI circuit can be viewed as a rectangle in the plane.

A simple version of the floorplan/placement problem is to place n rectangles in the plane in axis-parallel

orientation such that some given constraints are satisfied. Information about relative locations among

rectangles is given as constraints. Relative location means that rectangle , should be placed

either below (or above) rectangle , or to the left (or right) hand side of rectangle . For each

rectangle , the coordinates of its lower left corner and its upper right corner are represented as

 and

 , respectively. That rectangle is located below rectangle means

 . Similarly, that

rectangle is to the left of rectangle means

 . Notice that each rectangle can be placed rotated by

 . Figure 1 shows two example cases in which rectangle is below rectangle .

Figure 1. Two example cases to illustrate is below

The constraints regarding relative locations among the rectangles are represented as a binary tree called

‘slicing tree.’ A slicing tree represents how the plane is partitioned and which rectangle should be placed in

each sub-region. Each internal node of the slicing tree is labeled as either Ⓗ or Ⓥ. Each external node of the

slicing tree is labeled with a rectangle identification number . The label Ⓗ or Ⓥ for an internal

node means that the sub-region on the plane is partitioned either by a horizontal line or by a vertical line. For

example, if the slicing tree is as shown in Figure 2, it means that the plane is partitioned by a horizontal line

and that rectangle should be placed below rectangle . Notice that both of the placements shown in

Figure 1 meet the constraint shown in Figure 2.

Figure 2. An example of slicing tree for 2 rectangles

ICPC 2012 Asia Regional – Daejeon Problem J: Slicing Tree

On the other hand, if the slicing tree is as shown in Figure 3, it means that the plane is partitioned by a vertical

line and that rectangle should be placed to the left hand of rectangle .

Figure 3. Another example of slicing tree for 2 rectangles

If any internal node in the slicing tree is labeled as Ⓗ, all the rectangles belonging to the left sub-tree

rooted at should be placed below any rectangles belonging to the right sub-tree rooted at . Similarly, if

any internal node in the slicing tree is labeled as Ⓥ, all the rectangles belonging to the left sub-tree rooted

at should be placed to the left of any rectangle belonging to the right sub-tree rooted at . For example,

Figure 4 shows a slicing tree and two different corresponding placements.

Figure 4. A slicing tree and its two different corresponding placements

Let □R denote the minimum rectangle which encloses all the rectangles when a placement is determined.

Such enclosing rectangles corresponding to the placements shown in Figure 4 are shown in Figure 5 with

dotted lines.

Figure 5. Minimum enclosing rectangles

Given information regarding a slicing tree and the rectangles’ dimensions, your program should determine the

location for each rectangle such that the placement meets the given constraints and such that the area of the

enclosing rectangle □R is as small as possible. Notice that the area of the enclosing rectangle □R can be affected

by the orientation of each rectangle.

Input
Your program is to read from standard input. The input consists of T test cases. The number of test cases T is

given in the first line of the input. Each test case starts with a line containing an integer ,
where is the number of rectangles. In the following lines, dimensions of rectangles are given, each line

for each rectangle. The – line contains two integers, and , for

width and for height of rectangle . In the next line the information regarding a slicing tree is given. The

ICPC 2012 Asia Regional – Daejeon Problem J: Slicing Tree

information is represented as a list consisting of items separated by spaces, which is obtained by

traversing the slicing tree in post-order. Each item of the list is either a label for an internal node or for an

external node. The label for an internal node is either H or V. The label for an external node is an integer

 , which is the rectangle identification number.

Output
Your program is to write to standard output. Print exactly one line for each test case. For each test case, find a

placement such that the given constraints regarding relative locations among rectangles are satisfied and the

area of the enclosing rectangle □R is as small as possible. Then print the area of the rectangle □R for each test

case. You can assume that the resulting area of □R is less than
 for each test case.

The following shows sample input and output for two test cases.

Sample Input Output for the Sample Input
2

5

1 5

4 2

3 3

1 3

5 4

2 1 V 3 5 H 4 V H

6

4 2

5 7

7 2

4 4

1 4

5 3

2 3 H 1 5 V 6 4 H V V

65

105

ICPC 2012 Asia Regional – Daejeon Problem K: Sports Reporters

The 37
th

 Annual

ACM International Collegiate

Programming Contest

Asia Regional - Daejeon

Problem K
Sports Reporters

A news agency wishes to cover sporting events that will take place soon. For each event , , its

starting time , duration time , and geographical site are known in advance. In addition, the travel time

 from to is also known for all , where and for every

 . In gathering news from an event, the news agency wants one reporter to fully take responsibility

for the entire period of the event. This means that two events and may be assigned to the same reporter if

 or .

Under these constraints, a manager of the agency tries to identify a maximum subset of events such that no

pair of events in the subset can be assigned to the same reporter. Write a program that solves the manager’s

problem.

Input
Your program is to read from standard input. The input consists of test cases. The number of test cases is

given in the first line of the input. Each test case is described by a number of lines. The first line of a test case

contains an integer , indicating the number of sporting events . Then, the second line

contains integers , , , separated by spaces, where is the starting time of event
 . Similary, the third line contains integers , , , , where is the duration time of

 . In the following lines, the -th line contains integers , , , ,

where is the travel time from to . You may assume for every .

Output
Your program is to write to standard output. Print exactly two lines per each test case. The first line should

contain the maximum number of events in which no two can be assigned to the same reporter. Then, the

second line should contain the indices of such events (i.e., for), separated by a space. If there are

multiple solutions, just output any one of them.

The following shows sample input and output for two test cases.

Sample Input Output for the Sample Input
2

3

7 8 9

1 1 1

0 2 2

0 1

0

2

7 12

3 2

0 2

0

3

2 3 1

1

2

ICPC 2012 Asia Regional – Daejeon Problem L: Square Annulus

The 37
th

 Annual

ACM International Collegiate

Programming Contest

Asia Regional - Daejeon

Problem L
Square Annulus

A square annulus is the planar shape contained between two concentric axis-parallel squares, i.e., two squares

with a common center whose sides are parallel to the x- and y-axes. More precisely, it means the area inside

the bigger square but outside the smaller one, including their boundaries. The width of a square annulus is

defined to be half the difference of the side lengths of its two squares. See the left figure below, in which a

square annulus is depicted as gray region with the center marked by .

You are given points in the plane and you have to find a square annulus of minimum width that contains

all the given points. The right figure above shows an example of a square annulus of minimum width

containing all given points (marked by dots).

Your program is to compute the width of a square annulus that contains all the given points. You can

exploit the following fact, which has been shown by a German research group:

There exists a square annulus of minimum width containing given points

such that its bigger square is a smallest axis-parallel square containing the points.

Because the bigger square of must contain all the points, the above fact means that can be assumed to

have the minimum side length among all axis-parallel squares containing the points; in other words, if is

the side length of , then there is no axis-parallel square containing the points with side length smaller than

 .

Remark that there can be many such squares of the same side length with containing the given points. Also,

note that the width of can be zero when the two squares defining are the same; or, the smaller square of

may have side length zero, so the width of can be as large as half the side length of its bigger square.

width

ICPC 2012 Asia Regional – Daejeon Problem L: Square Annulus

Input
Your program is to read from standard input. The input consists of test cases. The number of test cases is

given in the first line of the input. From the second line, each test case is given in order, consisting of the

following: a test case contains an integer , the number of input points, in its first line,

and is followed by lines each of which consists of two integers inclusively between and

 , representing the - and -coordinates of a point in the plane. Two consecutive integers in one line

are separated by a single space and there is no empty line between two consecutive test cases.

Output
Your program is to write to standard output. Print exactly one line for each test case. The line should contain a

single value, representing the minimum width of an axis-parallel square annulus containing the input

points. The value to be printed should consist of the whole integer part of the computed width, a decimal point,

and exactly one digit after the decimal point. So, if necessary, you should round off the computed width to one

decimal place.

The following shows sample input and output for two test cases.

Sample Input Output for the Sample Input
2

11

-2 -2

1 -4

3 -3

6 -2

5 1

6 6

2 5

-3 1

-2 5

-2 8

1 7

12

-11 0

15 -4

10 -13

5 -12

-4 19

0 17

8 30

-10 -23

-9 -17

6 27

-8 23

-11 -8

3.0

13.5

	5. 문제셋
	6. 문제Merged - AtoL
	A_Accelerator_final
	B_ContourMap_final
	C_Critical3Path_final
	D_DotNumber_final_ver
	E_Palindrome_final
	F_Pandora_final
	G_Pattern_final
	H_Pole_final
	I_Problem_RPS_final
	J_SlicingTree_final
	K_Reporters_final
	L_SquareAnnulus_final

