

Problem Set

 Please check that you have 12 problems and 23 pages (excluding this cover page and blank pages).

A. Broadcast Stations (2 pages)

B. Connect3 (1 page)

C. Game Map (2 pages)

D. Happy Number (1 page)

E. How Many to Be Happy? (2 pages)

F. Philosopher’s Walk (2 pages)

G. Rectilinear Regions (2 pages)

H. Rock Paper Scissors (2 pages)

I. Slot Machines (2 pages)

J. Strongly Matchable (2 pages)

K. Untangling Chain (2 pages)

L. Vacation Plans (3 pages)

The memory limits for the twelve problems are all the same, 512MB.

ICPC 2017 Asia Regional – Daejeon Problem A: Broadcast Stations

Problem A
Broadcast Stations

Time Limit: 0.5 Seconds

There is a network of cities where broadcast stations, broadcasting identical information, should be placed on
some cities. Each broadcast station has its own transmission power so that it can broadcast to any city within
distance from it. Here, the distance between two vertices is the number of edges included in the (unique)
path between them. In this problem, the network of cities is a tree 	with vertices each of which represents a
city.

For a tree 	with a set of vertices, we will assign a non-negative integer , called a broadcast power, to
every vertex in such that every vertex with 	 	0 is within distance from some vertex with

	 	0. Then we can regard the vertices with 	 	0 as broadcast stations of transmission power
, and a vertex with 	 	0 can hear the broadcast of , if is within distance from .

The goal of the problem is to find an assignment of the broadcast powers of vertices in described
above, minimizing ∑ ∈ .

For example, in Figure A.1, two cases of an assignment of broadcast powers to vertices are shown. In the case
of Figure A.1 (a), only the vertex 6 has the broadcast power 4 and the other vertices have zero. Then all the
vertices with the broadcast power 0 can hear the broadcast of the vertex 6. In the case of Figure A.1 (b), two
vertices 3 and 9 have the broadcast powers 2 and 1, respectively. Then all the vertices with the broadcast
power 0 can hear the broadcast of either the vertex 3 or 9. This case minimizes the sum of broadcast powers.

(a) (b)

Figure A.1: Two assignments of broadcast powers

Input
Your program is to read from standard input. The first line contains one integer (1 5,000)
representing the number of vertices of the input tree . The vertices of are numbered from 1 to . Each of
the following 1 lines contains two integers and (1 ,) representing an edge to connect two
vertices and in .

Output
Your program is to write to standard output. Print exactly one line which contains an integer that is the
minimum sum of broadcast powers among all the possible assignments of broadcast powers to the vertices in

 described above.

ICPC 2017 Asia Regional – Daejeon Problem A: Broadcast Stations

The following shows sample input and output for two test cases.

Sample Input 1 Output for the Sample Input 1
6
1 2
3 2
2 4
5 4
6 4

2

Sample Input 2 Output for the Sample Input 2
12
1 2
2 3
4 5
5 3
3 6
6 7
7 8
8 9
12 9
9 11
10 9

3

ICPC 2017 Asia Regional – Daejeon Problem B: Connect3

Problem B
Connect3

Time Limit: 0.5 Seconds

Connect3 is a simplified version of a well-known Connect4 game. Connect3 is a game for two players, black
and white, who take turns placing their colored stones in a 4 x 4 grid board shown in Fig.B.1. Each square (or
box) in the grid is represented by a pair of numbers (a, b) where a is for a row and b is for a column. The
lower left corner of the board is (1, 1), and the upper right corner is (4, 4). Each player selects a column to
place a stone which is then placed on the lowest empty square in the column. For example, square (3, 1) is to
be taken only when squares (2, 1) and (1, 1) are occupied beforehand. The game ends if three stones with the
same color connect in either horizontally, diagonally, or vertically in a row and the player of the color wins.

(4, 1) (4, 2) (4, 3) (4, 4)

(3, 1) (3, 2) (3, 3) (3, 4)

(2, 1) (2, 2) (2, 3) (2, 4)

(1, 1) (1, 2) (1, 3) (1, 4)

Fig.B.1. Board of Connect3. Each grid square is represented by (a, b) where a is for a row and b is for a column.

The game starts by a player placing a black stone on square (1, x). If the game ends by the white player
placing a stone on square , , let the final state of the board be . You are to write a program to find the
number of all possible unique states of . Note that the order of stones placed is irrelevant.

Input
Your program is to read from standard input. The input starts with a line containing an integer x (1 	 4 ,
representing the column of the first stone placed on the board. The next line of input shows two integers,
	and for square (a, b) which is the position of the last stone placed on the board.

Output
Your program is to write to standard output. Print exactly one number that corresponds to the answer.

The following shows sample input and output for two test cases.

Sample Input 1 Output for the Sample Input 1
2
2 3

516

Sample Input 2 Output for the Sample Input 2
3
4 4

177

ICPC 2017 Asia Regional – Daejeon Problem B: Connect3

BLANK
PAGE

ICPC 2017 Asia Regional – Daejeon Problem C: Game Map

Problem C
Game Map

Time Limit: 1 Second

The ICPC-World is the most popular RPG game for ACM-ICPC
contestants, whose objective is to conquer the world. A map of the
game consists of several cities. There is at most one road between a
pair of cities. Every road is bidirectional. If there is a road connecting
two cities, they are called neighbors. Each city has one or more
neighbors and all cities are connected by one or more roads. A player
of the game can start at any city of the world. After conquering a city
that the player stays, the player can proceed to any neighbor city
which is the city the player to conquer at the next stage.

Chansu, a mania of the game, enjoys the game in a variety of ways. He always determines a list of cities
which he wants to conquer before he starts to play the game. In this time, he wants to choose as many cities as
possible under the following conditions: Let (, , ⋯ , be a list of cities that he will conquer in order.
All cities of the list are distinct, i.e.,	 if , and are neighbors to each other, and the number of
neighbors of is greater than the number of neighbors of for 0, 1, … , 2.

For example, let’s consider a map of the game shown in the figure below. There are six cities on the map. The
city 0 has two neighbors and the city 1 has five neighbors. The longest list of cities satisfying the above
conditions is 2, 5, 4, 1 with 4 cities.

In order to help Chansu, given a map of the game with cities, write a program to find the maximum number
of cities that he can conquer, that is, the length of the longest list of cities satisfying the above conditions.

Input
Your program is to read from standard input. The input starts with a line containing two integers, and
(1 100,000, n 1 300,000), where	 is the number of cities on the game map and is the
number of roads. All cities are numbered from 0 to 1. In the following lines, each line contains two
integers 	and	 	 0 1 which represent a road connecting two cities 	and	 .

Output
Your program is to write to standard output. Print exactly one line. The line should contain the maximum
number of cities which Chansu can conquer.

The following shows sample input and output for two test cases.

ICPC 2017 Asia Regional – Daejeon Problem C: Game Map

Sample Input 1 Output for the Sample Input 1
6 9
0 1
0 4
1 2
1 3
1 4
1 5
2 5
3 4
4 5

4

Sample Input 2 Output for the Sample Input 2
12 11
1 2
2 3
3 4
4 5
5 0
6 3
7 4
8 5
9 4
10 5
11 5

5

ICPC 2017 Asia Regional – Daejeon Problem D: Happy Number

Problem D
Happy Number

Time Limit: 0.2 Seconds

Consider the following function defined for any natural number :

 is the number obtained by summing up the squares of the digits of in decimal (or base-ten).

If 19, for example, then 19 82 because 1 9 82.

Repeatedly applying this function , some natural numbers eventually become 1. Such numbers are called
happy numbers. For example, 19 is a happy number, because repeatedly applying function to 19 results in:

 19 1 9 82
 82 8 2 68
 68 6 8 100
 100 1 0 0 1

However, not all natural numbers are happy. You could try 5 and you will see that 5 is not a happy number. If

 is not a happy number, it has been proved by mathematicians that repeatedly applying function to
reaches the following cycle:

 4 → 16 → 37 → 58 → 89 → 145 → 42 → 20 → 4.

Write a program that decides if a given natural number is a happy number or not.

Input
Your program is to read from standard input. The input consists of a single line that contains an integer,
(1 	1,000,000,000)

Output
Your program is to write to standard output. Print exactly one line. If the given number is a happy number,
print out HAPPY; otherwise, print out UNHAPPY.

The following shows sample input and output for two test cases.

Sample Input 1 Output for the Sample Input 1
19 HAPPY

Sample Input 2 Output for the Sample Input 2
5 UNHAPPY

ICPC 2017 Asia Regional – Daejeon Problem D: Happy Number

BLANK
PAGE

ICPC 2017 Asia Regional – Daejeon Problem E: How Many to Be Happy?

Problem E
How Many to Be Happy?

Time Limit: 0.5 Seconds

Let be a connected simple undirected graph where each edge has an associated weight. Let’s consider the
popular MST (Minimum Spanning Tree) problem. Today, we will see, for each edge , how much
modification on is needed to make part of an MST for . For an edge in , there may already exist an
MST for that includes . In that case, we say that is happy in and we define to be 0. However, it
may happen that there is no MST for that includes . In such a case, we say that is unhappy in . We may
remove a few of the edges in to make a connected graph ′ in which is happy. We define to be the
minimum number of edges to remove from such that	 is happy in the resulting graph ′.

Figure E.1. A complete graph with 3 nodes.

Consider the graph in Figure E.1. There are 3 nodes and 3 edges connecting the nodes. One can easily see that
the MST for this graph includes the 2 edges with weights 1 and 2, so the 2 edges are happy in the graph. How
to make the edge with weight 3 happy? It is obvious that one can remove any one of the two happy edges to
achieve that.

Given a connected simple undirected graph , your task is to compute for each edge in and print the
total sum.

Input
Your program is to read from standard input. The first line contains two positive integers and ,
respectively, representing the numbers of vertices and edges of the input graph, where 100 and 500.
It is assumed that the graph has vertices that are indexed from 1 to . It is followed by lines, each
contains 3 positive integers , , and that represent an edge of the input graph between vertex and vertex

 with weight . The weights are given as integers between 1 and 500, inclusive.

Output
Your program is to write to standard output. The only line should contain an integer , which is the sum of

 where ranges over all edges in .

The following shows sample input and output for two test cases.

ICPC 2017 Asia Regional – Daejeon Problem E: How Many to Be Happy?

Sample Input 1 Output for the Sample Input 1
3 3
1 2 1
3 1 2
3 2 3

1

Sample Input 2 Output for the Sample Input 2
7 9
1 2 8
1 3 3
2 3 6
4 2 7
4 5 1
5 6 9
6 7 3
7 4 2
4 6 2

3

ICPC 2017 Asia Regional – Daejeon Problem F: Philosopher’s Walk

Problem F
Philosopher’s Walk

Time Limit: 0.5 Seconds

In Programming Land, there are several pathways called Philosopher’s Walks for
philosophers to have a rest. A Philosopher’s Walk is a pathway in a square-
shaped region with plenty of woods. The woods are helpful for philosophers to
think, but they planted so densely like a maze that they lost their ways in the
maze of woods of a Philosopher’s Walk.

Fortunately, the structures of all Philosopher’s Walks are similar; the structure of a Philosopher’s Walk is
designed and constructed according to the same rule in a 2 meter square. The rule for designing the pathway
is to take a right-turn in 90 degrees after every 1-meter step when is 1, and the bigger one for which the
integer is greater than 1 is built up using four sub-pathways with 1 in a fractal style. Figure F.1 shows
three Philosopher’s Walks for which is 1, 2, and 3. The Philosopher’s Walk consists of four
structures with the lower-left and the lower-right ones are 90 degree rotated clockwise and counter-clockwise,
respectively; the upper ones have the same structure with . The same is true for any for which the
integer is greater than 1. This rule has been devised by a mathematical philosopher David Hilbert (1862 –
1943), and the resulting pathway is usually called a HILBERT CURVE named after him. He once talked about a
space filling method using this kind of curve to fill up a square with 2 sides, and every Philosophers’ Walk is
designed according to this method.

(a) (b) (c)

Figure F.1. Three Philosopher’s Walks with sizes (a) 	2, (b) 	4, and (c) 	8, repectively.

Tae-Cheon is in charge of the rescue of the philosophers lost in Philosopher’s Walks using a hot air balloon.
Fortunately, every lost philosopher can report Tae-Cheon the number of meter steps he has taken, and Tae-
Cheon knows the length of a side of the square of the Philosopher’s Walk. He has to identify the location of
the lost philosopher, the (,) coordinates assuming that the Philosopher’s Walk is placed in the 1st quadrant
of a Cartesian plain with one meter unit length. Assume that the coordinate of the lower-left corner block is

ICPC 2017 Asia Regional – Daejeon Problem F: Philosopher’s Walk

(1, 1). The entrance of a Philosopher’s Walk is always at (1, 1) and the exit is always (, 1) where is the
length of a side. Also assume that the philosopher have walked one meter step when he is in the entrance, and
that he always go forward to the exit without back steps.

For example, if the number of meter-steps taken by a lost philosopher in the Philosopher’s Walk in in
Figure F.1(b) is 10, your program should report (3, 4).

Your mission is to write a program to help Tae-Cheon by making a program reporting the location of the lost
philosopher given the number of meter-steps he has taken and the length of a side of the square of the
Philosopher’s Walk. Hurry! A philosopher urgently needs your help.

Input
Your program is to read from standard input. The input consists of a single line containing two positive
integers, and , representing the length of a side of the square of the Philosopher’s Walk and the number of
meter-steps taken by the lost philosopher, respectively, where 2 and 2 for an integer satisfying
0 15.

Output
Your program is to write to standard output. The single output line should contain two integers, and ,
separated by a space, where (,) is the location of the lost philosopher in the given Philosopher’s Walk.

The following shows sample input and output for two test cases.

Sample Input 1 Output for the Sample Input 1
4 10 3 4

Sample Input 2 Output for the Sample Input 2
8 19 2 6

ICPC 2017 Asia Regional – Daejeon Problem G: Rectilinear Regions

Problem G
Rectilinear Regions

Time Limit: 0.5 Seconds

A rectilinear path connecting two points in the plane is a path consisting of only horizontal and vertical line
segments. A rectilinear path is said to be monotone with respect to the -axis (resp., -axis) if and only if its
intersection with every vertical (resp., horizontal) line is either empty or a contiguous portion of that line. A
staircase is a rectilinear path if it is monotone to both the -axis and the -axis, and a staircase is unbounded
if it starts and ends with a semi-infinite horizontal segment, i.e., a segment that extends to infinity on both
ends of the -axis. Note that staircases can be either increasing or decreasing, depending on whether they go
up or down as we move along them from left to right on the -axis. A staircase with vertical line segments
is called a staircase with steps.

Considering two unbounded staircases L and U, there can be several or no closed rectilinear regions bounded
by staircases L and U. Among the closed rectilinear regions, some regions are bounded by a staircase L to the
bottom and by a staircase U to the top. For example, in the following figure, the two regions colored yellow
are that kind of closed rectilinear regions. We would like to compute the total area of such regions.

L

U

Figure G.1. Two staircases L and U, where U has 3-steps and L has 4-steps. The two yellow
colored regions are closed rectilinear regions bounded by a staircase L to the bottom, and a
staircase U to the top. The , 	(resp., ,) are the -, -coordinates of corner points of
the staircase L (resp., U).

ICPC 2017 Asia Regional – Daejeon Problem G: Rectilinear Regions

The geometry for an -step staircase is represented by the -, -coordinates of corner points of the staircase in
the following order:

 -------------------------------- (1)

where 	⋯ 	 for -coordinates of vertical line segments, and 	⋯ 	 for -
coordinates of horizontal line segments of an increasing staircase or 	⋯ 	 for a decreasing
staircase.

For example, given a 4-step staircase L represented with

6 2 9 11 11 15 16 21 19

and a 3-step staircase U represented with

3 6 12 10 14 18 17

the number of bounded rectilinear regions is 2 and the total area of the regions is 32 (see figure G.1).

Given two unbounded staircases L and U that all -coordinates represented in (1) of corner points of both L
and U are unique, and all -coordinates represented in (1) of corner points of both L and U are unique,
compute the total area of bounded rectilinear regions that bounded by L to the bottom of the regions and by U
to the top of the regions.

Input
Your program is to read from standard input. The first line contains two positive integers and ,
respectively, representing the number of steps of unbounded staircases L and U, where 1	 , 25,000.
The second (resp., third) line contains 2 1 (resp., 2 1) integers representing the -, -coordinates of
corner points of the staircase L (resp., U), and the integers are sequenced in the order of the notation (1). The
coordinates are represented with non-negative integers less than or equal to 50,000.

Output
Your program is to write to standard output. The first line should contain two integers and , where
represents the number of closed rectilinear regions and represents the total area of those regions. If there is
no such regions, then your program should write 0 for both and .

The following shows sample input and output for two test cases.

Sample Input 1 Output for the Sample Input 1
4 3
6 2 9 11 11 15 16 21 19
3 6 12 10 14 18 17

2 32

Sample Input 2 Output for the Sample Input 2
4 3
9 1 7 3 5 5 3 7 1
0 2 2 4 4 6 6

0 0

Sample Input 3 Output for the Sample Input 3
1 1
1 50000 50000
0 0 49999

1 2499900000

⋯

ICPC 2017 Asia Regional – Daejeon Problem H: Rock Paper Scissors

Problem H
Rock Paper Scissors

Time Limit: 1 Second

There is a Rock Paper Scissors (RPS) machine which generates Rock, Paper, or Scissors randomly. You also
have a similar small Rock Paper Scissors machine. Before the game, the RPS machine will generate a list of
its choice of Rock, Paper, or Scissors of the length and your machine also will generates a list of its choice
of the length . That is, you know the whole list of the RPS’s choices and you have the list of your machine’s
choices. Of course, each choice of the machines is one of the three options (Rock, Paper, or Scissors).

Now, you start playing Rock Paper Scissors game. In every match, you compare the list of RPS’s choice and
the list of your machine’s in sequence and decide whose machine would win. However, only you may skip
some RPS’s choices to find the position to get the most winning points of your machine. After you decide to
start match you cannot skip the match till the end of the match. ‘R’ stands for Rock, ‘P’ stands for Paper, and
‘S’ stands for Scissors.

For example, suppose that the RPS’s list is “RSPPSSSRRPPR” and your machine’s list is “RRRR”. To get
the most winning points, you should start the match after skipping three RPS’s choices or four RPS’s choices.
(See Figure H.1.) Then, you can win in three matches. The draw case is not considered.

Figure H.1. The most winning position against RPS machine when 12 and 4.

Given the list of RPS’s choices and the list of your choices, find the position to get the maximum number of
wining matches.

Input
Your program is to read from standard input. The first line contains two positive integers and 1	 	

100,000 , where is the length of the string for RPS machine and is the length of the string for your
machine. Following the first line contains the list of choices of RPS machine and the second line contains the
list of choices of your machine.

Output
Your program is to write to standard output. The first line should contain an integer indicating the maximum
number of wining matches

The following shows sample input and output for four test cases.

Sample Input 1 Output for the Sample Input 1
12 4
RSPPSSSRRPPR
RRRR

3

ICPC 2017 Asia Regional – Daejeon Problem H: Rock Paper Scissors

Sample Input 2 Output for the Sample Input 2
12 3
RRRRRRRRRRRR
SSS

0

Sample Input 3 Output for the Sample Input 3
12 4
PPPRRRRRRRRR
RSSS

2

Sample Input 4 Output for the Sample Input 3
12 4
RRRRRRRRRSSS
RRRS

3

ICPC 2017 Asia Regional – Daejeon Problem I: Slot Machines

Problem I
Slot Machines
Time Limit: 2 Seconds

Slot machines are popular game machines in casinos. The slot machine we are considering has six places
where a figure appears. By combination of figures, one may earn or lose money. There are ten kinds of figures,
so we will represent a figure with a number between 0 and 9. Then we can use a six-digit number

 where 0 , , , , , 9	to represent one possible outcome of the slot machine.
It is guaranteed that 000000 will never appear.

Figure I.1. The layout of a slot machine.

Old slot machines were made up with mechanical components, but nowadays they were replaced by PC-based
systems. This change made one critical flaw: they are based on pseudo-random number generators and the
outcome sequences of a slot machine are periodic. Let be the -th outcome of a slot machine. At first,
there is a truly random sequence of length , 1 , 2 , … , . Then there exists one positive number
such that for all possible values of . Once an attacker can find out the exact values of
and , he or she can exploit this fact to beat the casino by betting a lot of money when he or she knows the
outcome with a good combination in advance.

For example, you have first six numbers of outcome sequences: 612534, 3157, 423, 3157, 423, and 3157.
Note that we can remove first 0’s. Therefore, 3157 represents 003157 and 423 represents 000423. You want to
know its tenth number. If you know the exact values of and , then you can predict the tenth number.
However, there are many candidates for and : one extreme case is =5 and =1, and another is =0 and

=6. The most probable candidate is the one where both and are small. So, our choice is the one with the
smallest + . If there are two or more such pairs, we pick the one where is the smallest. With our example,
after some tedious computation, we get =1 and =2.

Assume that you have consecutive outcomes of a slot machine, 1 , 2 , … , . Write a program to
compute the values of and satisfying the above-mentioned condition.

Input
Your program is to read from standard input. The first line contains a positive integer 	 1 1,000,000 ,
representing the length of numbers we have observed up to now in the outcome sequence. The following line
contains numbers. Each of these numbers is between zero and 999,999.

Output
Your program is to write to standard output. Print two integers and in one line.

ICPC 2017 Asia Regional – Daejeon Problem I: Slot Machines

The following shows sample input and output for two test cases.

Sample Input 1 Output for the Sample Input 1
6
612534 3157 423 3157 423 3157

1 2

Sample Input 2 Output for the Sample Input 2
9
1 2 1 3 1 2 1 3 1

0 4

ICPC 2017 Asia Regional – Daejeon Problem J: Strongly Matchable

Problem J
Strongly Matchable

Time Limit: 3 Seconds

Let be a simple undirected graph with vertices, whose vertex and edge sets are denoted by and
, respectively. Two edges of are said to be adjacent if they share a common vertex. Similarly, two

vertices of are said to be adjacent if they share a common edge, in which case the common edge joins the
two vertices; an edge and a vertex on that edge are called incident. A subset of is called a matching of

 if no two edges in are adjacent; is called a perfect matching if every vertex of is incident to exactly
one edge of . So, a matching of is perfect if and only if | | .

The existence of a perfect matching in can be decided in polynomial time, thanks to a polynomial-time
algorithm for finding a maximum matching, a matching that contains the maximum number of edges. Besides,
there are two more interesting problems on the existence of a perfect matching in :

 Given a partition of into and with | | | | , does has a perfect matching in which

every edge joins a vertex in	 and a vertex in ?
 For every partition of into and with | | | | , does has a perfect matching in which

every edge joins a vertex in	 and a vertex in ?

From the well-known Hall’s marriage theorem, we can derive a condition that characterizes the existence of a
required perfect matching for the first question as follows: Let ′ be the spanning subgraph of with the
edges joining vertices both in or both in being deleted, i.e., and , ∈

	|	either	 ∈ 	and	 ∈ 	or	 ∈ 	and	 ∈ . Then, has a required perfect matching between and
 if and only if has a perfect matching. Moreover, the Hall’s theorem leads to that has a perfect

matching if and only if | | | | for every subset of , where denotes the neighborhood of , i.e.,
the set of all vertices in adjacent to some vertex of . The question, of course, can be answered in
polynomial time, also thanks to a maximum matching algorithm that runs in polynomial time.

Is there an efficient algorithm to answer the second question? A graph that admits a positive answer for the
second question is called strongly matchable; that is, a graph is strongly matchable if has a perfect
matching in which each edge joins two vertices, one in and the other in , for every partition of into
and with | | | | . For example, the graph shown in Figure J.1 (a) is strongly matchable because there

is a perfect matching for each of the three partitions up to symmetry: 1,4 , 2,5 , 3,6 for 1,2,3
and 4,5,6 ; 1,3 , 2,5 , 4,6 for 1,2,4 and 3,5,6 ; 1,3 , 2,5 , 6,4 for
1,2,6 and 3,4,5 . However, the graph of (b) is not strongly matchable because there is no perfect

matching between 1,2,4 and 3,5,6 . Your job is to write an efficient running program for deciding
whether or not an input graph with an even number of vertices is strongly matchable.

Input
Your program is to read from standard input. The first line contains two positive integers and ,
respectively, representing the numbers of vertices and edges of the input graph, where is even, 100,

and . It is followed by lines, each contains two positive integers and representing an edge

between the vertices and of the input graph. It is assumed that the vertices are indexed from 1 to .

ICPC 2017 Asia Regional – Daejeon Problem J: Strongly Matchable

(a) (b)

Figure J.1: The graph shown in (a) is strongly matchable, but the graph of (b) is not.

Output
Your program is to write to standard output. Print exactly one integer in a line. If the input graph is strongly
matchable, the integer should be 1; otherwise, the integer should be -1.

The following shows sample input and output for two test cases.

Sample Input 1 Output for the Sample Input 1
6 9
1 4
4 6
6 3
3 1
1 2
3 2
4 5
6 5
2 5

1

Sample Input 2 Output for the Sample Input 2
6 11
1 2
2 3
3 6
6 5
5 4
4 1
2 5
1 5
2 4
2 6
3 5

-1

ICPC 2017 Asia Regional – Daejeon Problem K: Untangling Chain

Problem K
Untangling Chain
Time Limit: 0.5 Seconds

A rectilinear chain is an ordered sequence that alternates horizontal and vertical segments as in Figure K.1.
You are given a rectilinear chain whose first segment starts from the origin 0, 0 and goes to the right. Such a
rectilinear chain of edges can be described as a sequence of pairs , where is the length of the -th
edge and denotes the turning direction from the -th edge to the 1 -st edge . For 1 ,
if the chain turns left from to , then 1, and if it turns right, then 1. For , is set to
be zero to indicate that is the last edge of the chain. For example, a rectilinear chain of six pairs shown in
Figure 1(a) is described as a sequence of six pairs 4, 1 , 5, 1 , 2, 1 , 2, 1 , 4, 1 , 5, 0 .

Figure K.1. (a) A non-simple chain. (b) An untangled simple chain

You would already notice that the rectilinear chain drawn by the given description is not simple. A chain is
simple if any two edges in the chain have no intersection except at the end points shared by adjacent edges. To
represent the chain in a more succinct way, you want to make it simple if it is not simple. In other words, you
need to untangle a given rectilinear chain to a simple chain by modifying the length of its edges. But the
length of each edge in the resulting chain must be at least 1 and at most , and the turning directions must be
kept unchanged. The chain shown in Figure K.1(b) shows one of possible modifications for the non-simple
chain given in Figure K.1(a), and its description is 4, 1 , 5, 1 , 2, 1 , 2, 1 , 1, 1 , 2, 0 .

Given a description of a rectilinear chain, you should write a program to untangle the rectilinear chain.

Input
Your program is to read from standard input. The first line contains an integer, 	 1 10,000 ,
representing the number of edges of an input rectilinear chain. In the following lines, the -th line contains
two integers and for the edge , separated by a single space, where 1 10,000 is the length
of , and is the turning direction from to ; 1 if it is the left turn and 1 if it is the right
turn for 1 , and 0 for .

Output
Your program is to write to standard output. The first line should contain positive integers, representing the
length of the edges of your untangled simple chain according to the edge order of the input chain. Each length
should be at least 1 and at most . Note that you do not need to output the turning directions because the

ICPC 2017 Asia Regional – Daejeon Problem K: Untangling Chain

turning directions of the simple chain is identical to the ones of the input chain. You can assume that any
rectilinear chain described in the input can be untangled with the edge length condition.

The following shows sample input and output for two test cases.

Sample Input 1 Output for the Sample Input 1
6
4 1
5 -1
2 -1
2 -1
4 1
5 0

4 5 2 2 1 2

Sample Input 2 Output for the Sample Input 2
6
3 1
3 1
2 1
4 1
1 1
3 0

2 3 2 2 1 1

ICPC 2017 Asia Regional – Daejeon Problem L: Vacation Plans

Problem L
Vacation Plans
Time Limit: 1 Second

A group of people plan to have a vacation in a remote island near the equator over the winter holiday. All
members of the group live in different countries and the destination island is only reachable via airplane.
Therefore, each member has to go to their own country’s airport to take a flight to the destination island. We
assume that each country has only one airport. Now, for the sake of holiday spirit, all group members agree to
start the journey on the same day from their home cities. Also, they plan to be at their country’s airports on the
same day, which is not necessarily the first day of their travel. However, the airports might not be in each
member’s home city, so some members may have to travel to another city over the course of a few days. On
the first day of the winter holiday, all members are in their respective home cities. Then, every day, each
member has to individually decide between traveling to an adjacent city (meaning that the two cities are
connected by a road), or staying the day in the city they are currently in. Since the travelling cost between two
adjacent cities and the cheapest hotel price in each city are already known to the world, one knows exactly
how much it will cost either to move to an adjacent city or to stay in that city for each day. All members want
to have as much money as possible for the vacation on the island, so they pool their money together and
decide to calculate the travel plans as a group. Their goal is that all the members end up at their designated
countries’ airports on the same day, while spending the least amount of money.

Figure L.1. Two members’ country layouts, where the designated airports are in cities 4 and 3, respectively. The home

city is 1 for both. denotes the travelling cost between two cites and denotes the cheapest hotel price.

Consider an example in Figure L.1 with two members and their designated airports being in cities 4 and 3,
respectively. The cheapest travel plans with both members starting in their hometowns (always city 1) would
be: (day 1) member-1 moves to city 3, member-2 moves to city 2; (day 2) member-1 moves to city 4,
member-2 moves to city 1; (day 3) member-1 stays at city 4, member-2 moves to city 3. This has cost 1
5 1 	 	 3 2 4 	 	16.

Note that the travelling cost between two cites is not necessary symmetric. Additionally, no city has a road
connecting it to itself. You can always assume that, in each country, there is at least one path from home to the
designated airport.

You should write a program that finds the minimum cost required to get all members from their home city to
their country’s designated airport such that everyone is at the airport on the same day. Note that every day,
one has to either move to an adjacent city or stays at the current city hotel.

ICPC 2017 Asia Regional – Daejeon Problem L: Vacation Plans

Input
Your program is to read from standard input. The first line contains a single integer 1 	 3 denoting the
number of people in the group that will be going on vacation (and therefore also the number of countries to be
considered). Then the next input represents each country as follows: The next line consist of two integers 1
	 50 and 1 	 4 ∗ , corresponding to the number of cities and roads in the country. The next

lines contain exactly one integer, 0 	 1,000,000, representing the cheapest hotel cost of each city (the
costs are given in order from city 1 to for each country). The next lines contain the road information.
Each road is represented by three integers, separated by spaces: 1 , 	 and 0 	 1,000,000 ,
which are the cities at the start and the end of the road, respectively, and the cost to travel on the road from
to . Finally, one more line is given containing a single integer 1 	 , denoting the city containing that
country’s airport. In each country, city 1 is each one’s home city.

Output
Your program is to write to standard output. You should output exactly one line containing a single integer
equal to the minimum cost required to get all members from their home city to their country’s designated
airport such that everyone is at the airport on the same day.

The following shows sample input and output for two test cases.

Sample Input 1 Output for the Sample Input 1
2
4 4
5
3
3
1
1 3 1
2 3 4
3 4 5
4 2 2
4
3 3
10
1
11
1 2 3
1 3 4
2 1 2
3

16

Sample Input 2 Output for the Sample Input 2
2
4 4
2
8
15
1
1 2 5
2 3 7
3 4 10
4 1 3
3
5 4

32

ICPC 2017 Asia Regional – Daejeon Problem L: Vacation Plans

1
1
1
1
1
1 2 3
2 3 5
3 4 7
4 5 1
5

	2017_Official_Problem_set
	2017_cover_page_problems
	A_Broadcast Stations_final
	B_Connect3_final
	C_GameMap_final
	D_HappyNumber_final
	E_HowManytoBeHappy_final
	F_PhilosophersWalk_final
	G_RectilinearRegions_final
	H_RockPaperScissors_final
	I_SlotMachines_final
	J_StronglyMatchable_final
	K_Untangling_Chain_final
	L_VacationPlans_final

